Nonlinear three-dimensional wagon-track model for the investigation of rail corrugation initiation on curved track

A nonlinear wagon-track model on curved track has been developed to characterize rail corrugation formation due to self-excitation of the wheel-rail stick-slip process. In this model, wagon movements were described using up to 78 degrees of freedom (DOFs) to model a three-piece freight bogie. Innova...

Full description

Saved in:
Bibliographic Details
Published inVehicle system dynamics Vol. 45; no. 2; pp. 113 - 132
Main Authors Sun, Y. Q., Simson, S.
Format Journal Article
LanguageEnglish
Published Colchester Taylor & Francis 01.02.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A nonlinear wagon-track model on curved track has been developed to characterize rail corrugation formation due to self-excitation of the wheel-rail stick-slip process. In this model, wagon movements were described using up to 78 degrees of freedom (DOFs) to model a three-piece freight bogie. Innovatively, the wheelset movements are described using nine DOFs, including torsional and bending modes about the longitudinal and vertical directions. The track modelling is considered as a one-layer structure (two rail beams on discrete spring and damper elements). The wheel sliding after creepage saturation is considered in the wheel-rail interface modelling. Simulation of a case study shows that the frequencies of the wheel stick-slip process are composed of the basic frequency, which might come from the combined effect of sleeper-passing frequency and one-third of the combined torsional and bending frequency of the wheelset, and the double and triple basic frequencies, which form the wavelengths of rail corrugation at different situations.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0042-3114
1744-5159
DOI:10.1080/00423110600863407