Improved Adhesion of Waterborne Polyurethanes by Hybridizations
Aqueous polyurethane dispersions based on isophorone diisocyanate (IPDI), poly (tetramethylene adipate) glycol (PTAd), and dimethylolproprionic acid (DMPA) were synthesized by a prepolymer mixing process. Effects of the molecular weight of PTAd and types of hybridizations, viz. blending, semi-interp...
Saved in:
Published in | The Journal of adhesion Vol. 84; no. 1; pp. 1 - 14 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Colchester
Taylor & Francis Group
01.01.2008
Taylor & Francis |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Aqueous polyurethane dispersions based on isophorone diisocyanate (IPDI), poly (tetramethylene adipate) glycol (PTAd), and dimethylolproprionic acid (DMPA) were synthesized by a prepolymer mixing process. Effects of the molecular weight of PTAd and types of hybridizations, viz. blending, semi-interpenetrating polymer network (IPN), and full IPNs with polybutylacrylate have been determined. It was found that thermal, mechanical, and adhesion properties of the polyurethane dispersions increased with increasing molecular weight of polyols.
Regarding the effects of hybridization, full IPNs gave the greatest tensile strength and elongation at break with a fast drying rate, whereas semi-IPNs gave the greatest initial as well as final adhesion, implying that a certain degree of chain mobility would augment the penetrations of adhesive molecules into the soft polyurethane foam substrates. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0021-8464 1563-518X 1545-5823 |
DOI: | 10.1080/00218460801888169 |