Online Hemodiafiltration Inhibits Inflammation-Related Endothelial Dysfunction and Vascular Calcification of Uremic Patients Modulating miR-223 Expression in Plasma Extracellular Vesicles
Decreased inflammation and cardiovascular mortality are evident in patients with end-stage chronic kidney disease treated by online hemodiafiltration. Extracellular vesicles (EV) are mediators of cell-to-cell communication and contain different RNA types. This study investigated whether mixed online...
Saved in:
Published in | The Journal of immunology (1950) Vol. 202; no. 8; pp. 2372 - 2383 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
15.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Decreased inflammation and cardiovascular mortality are evident in patients with end-stage chronic kidney disease treated by online hemodiafiltration. Extracellular vesicles (EV) are mediators of cell-to-cell communication and contain different RNA types. This study investigated whether mixed online hemodiafiltration (mOL-HDF) beneficial effects associate with changes in the RNA content of plasma EV in chronic kidney disease patients. Thirty bicarbonate hemodialysis (BHD) patients were randomized 1:1 to continue BHD or switch to mOL-HDF. Concentration, size, and microRNA content of plasma EV were evaluated for 9 mo; we then studied EV effects on inflammation, angiogenesis, and apoptosis of endothelial cells (HUVEC) and on osteoblast mineralization of vascular smooth muscle cells (VSMC). mOL-HDF treatment reduced different inflammatory markers, including circulating CRP, IL-6, and NGAL. All hemodialysis patients showed higher plasma levels of endothelial-derived EV than healthy subjects, with no significant differences between BHD and mOL-HDF. However, BHD-derived EV had an increased expression of the proatherogenic miR-223 with respect to healthy subjects or mOL-HDF. Compared with EV from healthy subjects, those from hemodialysis patients reduced angiogenesis and increased HUVEC apoptosis and VSMC calcification; however, all these detrimental effects were reduced with mOL-HDF with respect to BHD. Cell transfection with miR-223 mimic or antagomiR proved the role of this microRNA in EV-induced HUVEC and VSMC dysfunction. The switch from BHD to mOL-HDF significantly reduced systemic inflammation and miR-223 expression in plasma EV, thus improving HUVEC angiogenesis and reducing VSMC calcification. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
ISSN: | 0022-1767 1550-6606 1550-6606 |
DOI: | 10.4049/jimmunol.1800747 |