Bayesian semiparametric modeling for HIV longitudinal data with censoring and skewness

In biomedical studies, the analysis of longitudinal data based on Gaussian assumptions is common practice. Nevertheless, more often than not, the observed responses are naturally skewed, rendering the use of symmetric mixed effects models inadequate. In addition, it is also common in clinical assays...

Full description

Saved in:
Bibliographic Details
Published inStatistical methods in medical research Vol. 28; no. 5; p. 1457
Main Authors Castro, Luis M, Wang, Wan-Lun, Lachos, Victor H, Inácio de Carvalho, Vanda, Bayes, Cristian L
Format Journal Article
LanguageEnglish
Published England 01.05.2019
Subjects
Online AccessGet more information

Cover

Loading…
Abstract In biomedical studies, the analysis of longitudinal data based on Gaussian assumptions is common practice. Nevertheless, more often than not, the observed responses are naturally skewed, rendering the use of symmetric mixed effects models inadequate. In addition, it is also common in clinical assays that the patient's responses are subject to some upper and/or lower quantification limit, depending on the diagnostic assays used for their detection. Furthermore, responses may also often present a nonlinear relation with some covariates, such as time. To address the aforementioned three issues, we consider a Bayesian semiparametric longitudinal censored model based on a combination of splines, wavelets, and the skew-normal distribution. Specifically, we focus on the use of splines to approximate the general mean, wavelets for modeling the individual subject trajectories, and on the skew-normal distribution for modeling the random effects. The newly developed method is illustrated through simulated data and real data concerning AIDS/HIV viral loads.
AbstractList In biomedical studies, the analysis of longitudinal data based on Gaussian assumptions is common practice. Nevertheless, more often than not, the observed responses are naturally skewed, rendering the use of symmetric mixed effects models inadequate. In addition, it is also common in clinical assays that the patient's responses are subject to some upper and/or lower quantification limit, depending on the diagnostic assays used for their detection. Furthermore, responses may also often present a nonlinear relation with some covariates, such as time. To address the aforementioned three issues, we consider a Bayesian semiparametric longitudinal censored model based on a combination of splines, wavelets, and the skew-normal distribution. Specifically, we focus on the use of splines to approximate the general mean, wavelets for modeling the individual subject trajectories, and on the skew-normal distribution for modeling the random effects. The newly developed method is illustrated through simulated data and real data concerning AIDS/HIV viral loads.
Author Inácio de Carvalho, Vanda
Bayes, Cristian L
Lachos, Victor H
Castro, Luis M
Wang, Wan-Lun
Author_xml – sequence: 1
  givenname: Luis M
  orcidid: 0000-0001-7249-5207
  surname: Castro
  fullname: Castro, Luis M
  organization: 1 Department of Statistics, Pontificia Universidad Católica de Chile, Chile
– sequence: 2
  givenname: Wan-Lun
  surname: Wang
  fullname: Wang, Wan-Lun
  organization: 2 Department of Statistics, Graduate Institute of Statistics and Actuarial Science, Feng Chia University, Taichung, Taiwan
– sequence: 3
  givenname: Victor H
  surname: Lachos
  fullname: Lachos, Victor H
  organization: 3 Department of Statistics, University of Connecticut, Storrs, CT, USA
– sequence: 4
  givenname: Vanda
  surname: Inácio de Carvalho
  fullname: Inácio de Carvalho, Vanda
  organization: 4 School of Mathematics, University of Edinburgh, Edinburgh, UK
– sequence: 5
  givenname: Cristian L
  surname: Bayes
  fullname: Bayes, Cristian L
  organization: 5 Department of Sciences, Pontificia Universidad Católica del Perú, Lima, Perú
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29551086$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tKw0AUQAdR7EP3rmR-IHrnkZlkqcXaQsGNdlvuvOpoMgmZlNK_V1FXZ3M4cGbkPHXJE3LD4I4xre-hVpxXwFmlFQgFZ2TKpNYFCCEnZJbzBwBokPUlmfC6LBlUakq2j3jyOWKi2bexxwFbPw7R0rZzvolpT0M30NV6S5su7eN4cDFhQx2OSI9xfKfWp9wNPyImR_OnPyaf8xW5CNhkf_3HOXlbPr0uVsXm5Xm9eNgUVoIei1IHFZSwknFTcnAS6lAaFE5IBwKCQmYtWm9YbUUIoTLw_egNVszVJRg-J7e_3f5gWu92_RBbHE67_0H-BWbnVAM
CitedBy_id crossref_primary_10_1002_sim_9443
crossref_primary_10_1002_bimj_202100302
crossref_primary_10_3390_math10244816
crossref_primary_10_1080_00949655_2020_1812608
crossref_primary_10_1016_j_apm_2020_08_036
crossref_primary_10_1080_02664763_2021_1891527
crossref_primary_10_1007_s42081_025_00299_w
crossref_primary_10_1007_s11095_021_03110_z
ContentType Journal Article
DBID NPM
DOI 10.1177/0962280218760360
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Statistics
Mathematics
EISSN 1477-0334
ExternalDocumentID 29551086
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-TM
.2G
.2J
.2N
0-V
01A
0R~
123
1~K
29Q
31S
31U
31X
31Y
31Z
36B
3V.
4.4
53G
54M
5RE
5VS
6PF
7X7
88E
88I
8C1
8FE
8FG
8FI
8FJ
8R4
8R5
AABMB
AABOD
AACKU
AACMV
AACTG
AADTT
AADUE
AAEWN
AAGGD
AAJIQ
AAJOX
AAJPV
AAMGE
AANSI
AAPEO
AAQDB
AAQXH
AAQXI
AARDL
AARIX
AATAA
AATBZ
AAWTL
AAYTG
ABAWP
ABCCA
ABCJG
ABDLQ
ABDWY
ABEIX
ABFWQ
ABHKI
ABHQH
ABJCF
ABJIS
ABKRH
ABLUO
ABPGX
ABPNF
ABQKF
ABQXT
ABRHV
ABTDE
ABUJY
ABUWG
ABVFX
ABVVC
ABYTW
ACARO
ACDSZ
ACDXX
ACFEJ
ACFMA
ACGBL
ACGFS
ACGOD
ACGZU
ACIWK
ACJER
ACLHI
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSBE
ACSIQ
ACTQU
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADEIA
ADNMO
ADNON
ADRRZ
ADTBJ
ADUKL
ADVBO
ADYCS
AECGH
AECVZ
AEDTQ
AENEX
AEPTA
AEQLS
AERKM
AESZF
AEUHG
AEUIJ
AEWDL
AEWHI
AEXNY
AFEET
AFKBI
AFKRA
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGKLV
AGNHF
AGWFA
AGWNL
AHDMH
AHHFK
AHMBA
AIOMO
AJEFB
AJMMQ
AJUZI
AJXAJ
ALIPV
ALKWR
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMCVQ
ANDLU
ARALO
ARTOV
ASOEW
ASPBG
AUTPY
AUVAJ
AVWKF
AYAKG
AZFZN
AZQEC
B8O
B8R
B8Z
B93
B94
BBRGL
BDDNI
BENPR
BGLVJ
BKIIM
BPACV
BPHCQ
BSEHC
BVXVI
BYIEH
C45
CAG
CBRKF
CCPQU
CFDXU
COF
CORYS
CQQTX
CS3
DC-
DD-
DD0
DE-
DF0
DO-
DOPDO
DU5
DV7
DWQXO
D~Y
EAD
EAP
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FEDTE
FHBDP
FYUFA
GNUQQ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HCIFZ
HEHIP
HF~
HMCUK
HVGLF
HZ~
J8X
K.F
K.J
L6V
M1P
M2P
M2S
M4V
M7S
N9A
NPM
O9-
OVD
P.B
P2P
PQQKQ
PROAC
PSQYO
PTHSS
Q1R
Q2X
Q7K
Q7L
Q7X
Q82
Q83
RIG
ROL
S01
SAUOL
SCNPE
SDB
SFB
SFC
SFK
SFN
SFT
SGA
SGP
SGR
SGV
SGX
SGZ
SHG
SNB
SPJ
SPV
SQCSI
STM
SV3
TEORI
TN5
UKHRP
YHZ
ZONMY
ZPPRI
ZRKOI
ID FETCH-LOGICAL-c407t-57f6f63c412b520d409f5ba3d34d030f6a1ccaceb19c3fff8b0228eba81d950b2
IngestDate Wed Feb 19 02:31:29 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords semiparametric regression
skewness
mixed-effects models
Censored longitudinal data
HIV viral load
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c407t-57f6f63c412b520d409f5ba3d34d030f6a1ccaceb19c3fff8b0228eba81d950b2
ORCID 0000-0001-7249-5207
OpenAccessLink https://www.research.ed.ac.uk/portal/en/publications/bayesian-semiparametric-modeling-for-hiv-longitudinal-data-with-censoring-and-skewness(ff012357-418c-47ee-ab56-2d111f64c14d).html
PMID 29551086
ParticipantIDs pubmed_primary_29551086
PublicationCentury 2000
PublicationDate 2019-05-00
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Statistical methods in medical research
PublicationTitleAlternate Stat Methods Med Res
PublicationYear 2019
SSID ssj0007049
Score 2.268055
Snippet In biomedical studies, the analysis of longitudinal data based on Gaussian assumptions is common practice. Nevertheless, more often than not, the observed...
SourceID pubmed
SourceType Index Database
StartPage 1457
Title Bayesian semiparametric modeling for HIV longitudinal data with censoring and skewness
URI https://www.ncbi.nlm.nih.gov/pubmed/29551086
Volume 28
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcKkxAc0NaxAYPJh92mQOo4SXNkiKmb6E7AuCHbsbWKNUVKKwR_C38s7_kjyTo2sV3SKlajyO_X5_d7n4R8MHmGAbs8UiphEWc5iwrMzMnAvE9MbGJlfbrjb9nonH-9TC97vYdO1tJiLg_U_ZN1Jf8jVbgHcsUq2X-QbPNQuAHfQb5wBQnD9Vky_iTutC2CrPV0gk28pzgfS7nxNiFFcgQE7-cMxxItSjsCC5NCfco5cNhZU6ZYX-vbKiRkeHsVbVHbytkWmeCwaZs_O_XhHd8qqHEpH4t67gpnTheTuvW0fvdeafiMThdtFhCOanHj2CcYPGgrJb5UNoI_UJPZx1JjWgrs2w_75AsRvAjeWYH1USE18EA7BcvzPIoT78D0GpgNO0hLO-p0wF336t_1vI00A_3Cbj5gpQDiEjeXoCP2m6mVOyvAKoxdw-2_ry513g5LK2QFOAgOVUVPkD_lc6BWbdj7cPlVsMm0__kSYbGGy9lLsukZBz1y8HlFerrqk41x06637pO1sc-w6JP1RuL1a3IRAEZ_BRgNAKMAMAoAo12AUQQYRYDRBmAUhEYDwLbI-eeTs-NR5AdxRAr4_jxKc5OZLFF8wGTK4pLHhUmlSMqEl3BImEwMQBEoOPYLlRhjhhK7KmkpgAwVaSzZG7JazSq9TaitCxsKoM2p4azkgmlkARr2s9BSih3y1m3W1Y3rtnIVtnH3jyvvyHqLtT3ywsDfW--DrTiX763QHgEKXWis
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+semiparametric+modeling+for+HIV+longitudinal+data+with+censoring+and+skewness&rft.jtitle=Statistical+methods+in+medical+research&rft.au=Castro%2C+Luis+M&rft.au=Wang%2C+Wan-Lun&rft.au=Lachos%2C+Victor+H&rft.au=In%C3%A1cio+de+Carvalho%2C+Vanda&rft.date=2019-05-01&rft.eissn=1477-0334&rft.volume=28&rft.issue=5&rft.spage=1457&rft_id=info:doi/10.1177%2F0962280218760360&rft_id=info%3Apmid%2F29551086&rft_id=info%3Apmid%2F29551086&rft.externalDocID=29551086