Bayesian semiparametric modeling for HIV longitudinal data with censoring and skewness
In biomedical studies, the analysis of longitudinal data based on Gaussian assumptions is common practice. Nevertheless, more often than not, the observed responses are naturally skewed, rendering the use of symmetric mixed effects models inadequate. In addition, it is also common in clinical assays...
Saved in:
Published in | Statistical methods in medical research Vol. 28; no. 5; p. 1457 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.05.2019
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | In biomedical studies, the analysis of longitudinal data based on Gaussian assumptions is common practice. Nevertheless, more often than not, the observed responses are naturally skewed, rendering the use of symmetric mixed effects models inadequate. In addition, it is also common in clinical assays that the patient's responses are subject to some upper and/or lower quantification limit, depending on the diagnostic assays used for their detection. Furthermore, responses may also often present a nonlinear relation with some covariates, such as time. To address the aforementioned three issues, we consider a Bayesian semiparametric longitudinal censored model based on a combination of splines, wavelets, and the skew-normal distribution. Specifically, we focus on the use of splines to approximate the general mean, wavelets for modeling the individual subject trajectories, and on the skew-normal distribution for modeling the random effects. The newly developed method is illustrated through simulated data and real data concerning AIDS/HIV viral loads. |
---|---|
AbstractList | In biomedical studies, the analysis of longitudinal data based on Gaussian assumptions is common practice. Nevertheless, more often than not, the observed responses are naturally skewed, rendering the use of symmetric mixed effects models inadequate. In addition, it is also common in clinical assays that the patient's responses are subject to some upper and/or lower quantification limit, depending on the diagnostic assays used for their detection. Furthermore, responses may also often present a nonlinear relation with some covariates, such as time. To address the aforementioned three issues, we consider a Bayesian semiparametric longitudinal censored model based on a combination of splines, wavelets, and the skew-normal distribution. Specifically, we focus on the use of splines to approximate the general mean, wavelets for modeling the individual subject trajectories, and on the skew-normal distribution for modeling the random effects. The newly developed method is illustrated through simulated data and real data concerning AIDS/HIV viral loads. |
Author | Inácio de Carvalho, Vanda Bayes, Cristian L Lachos, Victor H Castro, Luis M Wang, Wan-Lun |
Author_xml | – sequence: 1 givenname: Luis M orcidid: 0000-0001-7249-5207 surname: Castro fullname: Castro, Luis M organization: 1 Department of Statistics, Pontificia Universidad Católica de Chile, Chile – sequence: 2 givenname: Wan-Lun surname: Wang fullname: Wang, Wan-Lun organization: 2 Department of Statistics, Graduate Institute of Statistics and Actuarial Science, Feng Chia University, Taichung, Taiwan – sequence: 3 givenname: Victor H surname: Lachos fullname: Lachos, Victor H organization: 3 Department of Statistics, University of Connecticut, Storrs, CT, USA – sequence: 4 givenname: Vanda surname: Inácio de Carvalho fullname: Inácio de Carvalho, Vanda organization: 4 School of Mathematics, University of Edinburgh, Edinburgh, UK – sequence: 5 givenname: Cristian L surname: Bayes fullname: Bayes, Cristian L organization: 5 Department of Sciences, Pontificia Universidad Católica del Perú, Lima, Perú |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29551086$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j8tKw0AUQAdR7EP3rmR-IHrnkZlkqcXaQsGNdlvuvOpoMgmZlNK_V1FXZ3M4cGbkPHXJE3LD4I4xre-hVpxXwFmlFQgFZ2TKpNYFCCEnZJbzBwBokPUlmfC6LBlUakq2j3jyOWKi2bexxwFbPw7R0rZzvolpT0M30NV6S5su7eN4cDFhQx2OSI9xfKfWp9wNPyImR_OnPyaf8xW5CNhkf_3HOXlbPr0uVsXm5Xm9eNgUVoIei1IHFZSwknFTcnAS6lAaFE5IBwKCQmYtWm9YbUUIoTLw_egNVszVJRg-J7e_3f5gWu92_RBbHE67_0H-BWbnVAM |
CitedBy_id | crossref_primary_10_1002_sim_9443 crossref_primary_10_1002_bimj_202100302 crossref_primary_10_3390_math10244816 crossref_primary_10_1080_00949655_2020_1812608 crossref_primary_10_1016_j_apm_2020_08_036 crossref_primary_10_1080_02664763_2021_1891527 crossref_primary_10_1007_s42081_025_00299_w crossref_primary_10_1007_s11095_021_03110_z |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1177/0962280218760360 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine Statistics Mathematics |
EISSN | 1477-0334 |
ExternalDocumentID | 29551086 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -TM .2G .2J .2N 0-V 01A 0R~ 123 1~K 29Q 31S 31U 31X 31Y 31Z 36B 3V. 4.4 53G 54M 5RE 5VS 6PF 7X7 88E 88I 8C1 8FE 8FG 8FI 8FJ 8R4 8R5 AABMB AABOD AACKU AACMV AACTG AADTT AADUE AAEWN AAGGD AAJIQ AAJOX AAJPV AAMGE AANSI AAPEO AAQDB AAQXH AAQXI AARDL AARIX AATAA AATBZ AAWTL AAYTG ABAWP ABCCA ABCJG ABDLQ ABDWY ABEIX ABFWQ ABHKI ABHQH ABJCF ABJIS ABKRH ABLUO ABPGX ABPNF ABQKF ABQXT ABRHV ABTDE ABUJY ABUWG ABVFX ABVVC ABYTW ACARO ACDSZ ACDXX ACFEJ ACFMA ACGBL ACGFS ACGOD ACGZU ACIWK ACJER ACLHI ACLZU ACOFE ACOXC ACROE ACRPL ACSBE ACSIQ ACTQU ACUAV ACUIR ACXKE ACXMB ADBBV ADEIA ADNMO ADNON ADRRZ ADTBJ ADUKL ADVBO ADYCS AECGH AECVZ AEDTQ AENEX AEPTA AEQLS AERKM AESZF AEUHG AEUIJ AEWDL AEWHI AEXNY AFEET AFKBI AFKRA AFKRG AFMOU AFQAA AFUIA AFWMB AGKLV AGNHF AGWFA AGWNL AHDMH AHHFK AHMBA AIOMO AJEFB AJMMQ AJUZI AJXAJ ALIPV ALKWR ALMA_UNASSIGNED_HOLDINGS ALSLI AMCVQ ANDLU ARALO ARTOV ASOEW ASPBG AUTPY AUVAJ AVWKF AYAKG AZFZN AZQEC B8O B8R B8Z B93 B94 BBRGL BDDNI BENPR BGLVJ BKIIM BPACV BPHCQ BSEHC BVXVI BYIEH C45 CAG CBRKF CCPQU CFDXU COF CORYS CQQTX CS3 DC- DD- DD0 DE- DF0 DO- DOPDO DU5 DV7 DWQXO D~Y EAD EAP EBS EJD EMB EMK EMOBN ESX F5P FEDTE FHBDP FYUFA GNUQQ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HCIFZ HEHIP HF~ HMCUK HVGLF HZ~ J8X K.F K.J L6V M1P M2P M2S M4V M7S N9A NPM O9- OVD P.B P2P PQQKQ PROAC PSQYO PTHSS Q1R Q2X Q7K Q7L Q7X Q82 Q83 RIG ROL S01 SAUOL SCNPE SDB SFB SFC SFK SFN SFT SGA SGP SGR SGV SGX SGZ SHG SNB SPJ SPV SQCSI STM SV3 TEORI TN5 UKHRP YHZ ZONMY ZPPRI ZRKOI |
ID | FETCH-LOGICAL-c407t-57f6f63c412b520d409f5ba3d34d030f6a1ccaceb19c3fff8b0228eba81d950b2 |
IngestDate | Wed Feb 19 02:31:29 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | semiparametric regression skewness mixed-effects models Censored longitudinal data HIV viral load |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c407t-57f6f63c412b520d409f5ba3d34d030f6a1ccaceb19c3fff8b0228eba81d950b2 |
ORCID | 0000-0001-7249-5207 |
OpenAccessLink | https://www.research.ed.ac.uk/portal/en/publications/bayesian-semiparametric-modeling-for-hiv-longitudinal-data-with-censoring-and-skewness(ff012357-418c-47ee-ab56-2d111f64c14d).html |
PMID | 29551086 |
ParticipantIDs | pubmed_primary_29551086 |
PublicationCentury | 2000 |
PublicationDate | 2019-05-00 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-00 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Statistical methods in medical research |
PublicationTitleAlternate | Stat Methods Med Res |
PublicationYear | 2019 |
SSID | ssj0007049 |
Score | 2.268055 |
Snippet | In biomedical studies, the analysis of longitudinal data based on Gaussian assumptions is common practice. Nevertheless, more often than not, the observed... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 1457 |
Title | Bayesian semiparametric modeling for HIV longitudinal data with censoring and skewness |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29551086 |
Volume | 28 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcKkxAc0NaxAYPJh92mQOo4SXNkiKmb6E7AuCHbsbWKNUVKKwR_C38s7_kjyTo2sV3SKlajyO_X5_d7n4R8MHmGAbs8UiphEWc5iwrMzMnAvE9MbGJlfbrjb9nonH-9TC97vYdO1tJiLg_U_ZN1Jf8jVbgHcsUq2X-QbPNQuAHfQb5wBQnD9Vky_iTutC2CrPV0gk28pzgfS7nxNiFFcgQE7-cMxxItSjsCC5NCfco5cNhZU6ZYX-vbKiRkeHsVbVHbytkWmeCwaZs_O_XhHd8qqHEpH4t67gpnTheTuvW0fvdeafiMThdtFhCOanHj2CcYPGgrJb5UNoI_UJPZx1JjWgrs2w_75AsRvAjeWYH1USE18EA7BcvzPIoT78D0GpgNO0hLO-p0wF336t_1vI00A_3Cbj5gpQDiEjeXoCP2m6mVOyvAKoxdw-2_ry513g5LK2QFOAgOVUVPkD_lc6BWbdj7cPlVsMm0__kSYbGGy9lLsukZBz1y8HlFerrqk41x06637pO1sc-w6JP1RuL1a3IRAEZ_BRgNAKMAMAoAo12AUQQYRYDRBmAUhEYDwLbI-eeTs-NR5AdxRAr4_jxKc5OZLFF8wGTK4pLHhUmlSMqEl3BImEwMQBEoOPYLlRhjhhK7KmkpgAwVaSzZG7JazSq9TaitCxsKoM2p4azkgmlkARr2s9BSih3y1m3W1Y3rtnIVtnH3jyvvyHqLtT3ywsDfW--DrTiX763QHgEKXWis |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+semiparametric+modeling+for+HIV+longitudinal+data+with+censoring+and+skewness&rft.jtitle=Statistical+methods+in+medical+research&rft.au=Castro%2C+Luis+M&rft.au=Wang%2C+Wan-Lun&rft.au=Lachos%2C+Victor+H&rft.au=In%C3%A1cio+de+Carvalho%2C+Vanda&rft.date=2019-05-01&rft.eissn=1477-0334&rft.volume=28&rft.issue=5&rft.spage=1457&rft_id=info:doi/10.1177%2F0962280218760360&rft_id=info%3Apmid%2F29551086&rft_id=info%3Apmid%2F29551086&rft.externalDocID=29551086 |