Bayesian semiparametric modeling for HIV longitudinal data with censoring and skewness

In biomedical studies, the analysis of longitudinal data based on Gaussian assumptions is common practice. Nevertheless, more often than not, the observed responses are naturally skewed, rendering the use of symmetric mixed effects models inadequate. In addition, it is also common in clinical assays...

Full description

Saved in:
Bibliographic Details
Published inStatistical methods in medical research Vol. 28; no. 5; p. 1457
Main Authors Castro, Luis M, Wang, Wan-Lun, Lachos, Victor H, Inácio de Carvalho, Vanda, Bayes, Cristian L
Format Journal Article
LanguageEnglish
Published England 01.05.2019
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:In biomedical studies, the analysis of longitudinal data based on Gaussian assumptions is common practice. Nevertheless, more often than not, the observed responses are naturally skewed, rendering the use of symmetric mixed effects models inadequate. In addition, it is also common in clinical assays that the patient's responses are subject to some upper and/or lower quantification limit, depending on the diagnostic assays used for their detection. Furthermore, responses may also often present a nonlinear relation with some covariates, such as time. To address the aforementioned three issues, we consider a Bayesian semiparametric longitudinal censored model based on a combination of splines, wavelets, and the skew-normal distribution. Specifically, we focus on the use of splines to approximate the general mean, wavelets for modeling the individual subject trajectories, and on the skew-normal distribution for modeling the random effects. The newly developed method is illustrated through simulated data and real data concerning AIDS/HIV viral loads.
ISSN:1477-0334
DOI:10.1177/0962280218760360