Study on Transient Properties of Levitated Object in Near-Field Acoustic Levitation

A new approach to the study on the transient properties of the levitated object in near-field acoustic levitation (NFAL) is presented. In this article, the transient response characteristics, including the levitated height of an object with radius of 24 mm and thickness of 5 mm, the radial velocity...

Full description

Saved in:
Bibliographic Details
Published inCommunications in theoretical physics Vol. 56; no. 12; pp. 1119 - 1124
Main Author 贾兵 陈超 赵淳生
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.12.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A new approach to the study on the transient properties of the levitated object in near-field acoustic levitation (NFAL) is presented. In this article, the transient response characteristics, including the levitated height of an object with radius of 24 mm and thickness of 5 mm, the radial velocity and pressure difference of gas at the boundary of clearance between the levitated object and radiating surface (squeeze film), is calculated according to severa/velocity amplitudes of radiating surface. First, the basic equations in fluid areas on Arbitrary Lagrange--Euler (ALE) form are numericaJly solved by using streamline upwind petrov gaJerkin (SUPG) finite elements method. Second, the formed a/gebraic equations and solid control equations are solved by using synchronous alternating method to gain the transient messages of the levitated object and gas in the squeeze film. Through theoretical and numerical analyses, it is found that there is a oscillation time in the transient process and that the response time does not simply increase with the increasing of velocity amplitudes of radiating surface. More investigations in this paper are helpful for the understanding of the transient properties of levitated object in NFAL, which are in favor of enhancing stabilities and responsiveness of levitated object.
Bibliography:11-2592/O3
near-field acoustic levitation, squeeze film, transient properties
JIA Bing,CHEN Chao, ZHAO Chun-Sheng (State Key Laboratory of Mechanics and Control for Mechanical Structures and Precision Driving Laboratory, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
A new approach to the study on the transient properties of the levitated object in near-field acoustic levitation (NFAL) is presented. In this article, the transient response characteristics, including the levitated height of an object with radius of 24 mm and thickness of 5 mm, the radial velocity and pressure difference of gas at the boundary of clearance between the levitated object and radiating surface (squeeze film), is calculated according to severa/velocity amplitudes of radiating surface. First, the basic equations in fluid areas on Arbitrary Lagrange--Euler (ALE) form are numericaJly solved by using streamline upwind petrov gaJerkin (SUPG) finite elements method. Second, the formed a/gebraic equations and solid control equations are solved by using synchronous alternating method to gain the transient messages of the levitated object and gas in the squeeze film. Through theoretical and numerical analyses, it is found that there is a oscillation time in the transient process and that the response time does not simply increase with the increasing of velocity amplitudes of radiating surface. More investigations in this paper are helpful for the understanding of the transient properties of levitated object in NFAL, which are in favor of enhancing stabilities and responsiveness of levitated object.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0253-6102
DOI:10.1088/0253-6102/56/6/25