Insights to the superoxide dismutase genes and its roles in Hevea brasiliensis under abiotic stress

The superoxide dismutase (SOD) protein significantly influences the development and growth of plants and their reaction to abiotic stresses. However, little is known about the characteristics of rubber tree SOD genes and their expression changes under abiotic stresses. The present study recognized 1...

Full description

Saved in:
Bibliographic Details
Published in3 Biotech Vol. 12; no. 10; p. 274
Main Authors Niu, Ying-Feng, Li, Guo-Hua, Zheng, Cheng, Liu, Zi-Yan, Liu, Jin
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The superoxide dismutase (SOD) protein significantly influences the development and growth of plants and their reaction to abiotic stresses. However, little is known about the characteristics of rubber tree SOD genes and their expression changes under abiotic stresses. The present study recognized 11 SOD genes in the rubber tree genome, including 7 Cu/ZnSODs, 2 MnSODs, and 2 FeSODs. Except for HbFSD1 , SOD s were scattered on five chromosomes. The phylogenetic analysis of SOD proteins in rubber trees and a few other plants demonstrated that the SOD proteins contained three major subgroups. Moreover, the genes belonging to the same clade contained similar gene structures, which confirmed their classification further. The extension of the SOD gene family in the rubber tree was mainly induced by the segmental duplication events. The cis -acting components analysis showed that HbSOD s were utilized in many biological procedures. The transcriptomics data indicated that the phosphorylation of the C-terminal domain of RNA polymerase II might control the cold response genes through the CBF pathway and activate the SOD system to respond to cold stress. The qRT-PCR results showed that the expression of HbCSD1 was significantly downregulated under drought and salt stresses, which might dominate the adaption capability to different stresses. Additionally, salt promoted the expression levels of HbMSD1 and HbMSD 2, exhibiting their indispensable role in the salinity reaction. The study results will provide a theoretical basis for deep research on HbSOD s in rubber trees.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2190-572X
2190-5738
DOI:10.1007/s13205-022-03328-7