Finite-Time Convergent Recurrent Neural Network With a Hard-Limiting Activation Function for Constrained Optimization With Piecewise-Linear Objective Functions

This paper presents a one-layer recurrent neural network for solving a class of constrained nonsmooth optimization problems with piecewise-linear objective functions. The proposed neural network is guaranteed to be globally convergent in finite time to the optimal solutions under a mild condition on...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural networks Vol. 22; no. 4; pp. 601 - 613
Main Authors Liu, Qingshan, Wang, Jun
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.2011
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a one-layer recurrent neural network for solving a class of constrained nonsmooth optimization problems with piecewise-linear objective functions. The proposed neural network is guaranteed to be globally convergent in finite time to the optimal solutions under a mild condition on a derived lower bound of a single gain parameter in the model. The number of neurons in the neural network is the same as the number of decision variables of the optimization problem. Compared with existing neural networks for optimization, the proposed neural network has a couple of salient features such as finite-time convergence and a low model complexity. Specific models for two important special cases, namely, linear programming and nonsmooth optimization, are also presented. In addition, applications to the shortest path problem and constrained least absolute deviation problem are discussed with simulation results to demonstrate the effectiveness and characteristics of the proposed neural network.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1045-9227
1941-0093
1941-0093
DOI:10.1109/TNN.2011.2104979