Targeting Type I Interferon Induction and Signaling: How Zika Virus Escapes from Host Innate Immunity

Zika virus (ZIKV) infection causes neurological disorders and draws great attention. ZIKV infection can elicit a wide range of immune response. Type I interferons (IFNs) as well as its signaling cascade play crucial role in innate immunity against ZIKV infection and in turn ZIKV can antagonize them....

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological sciences Vol. 19; no. 10; pp. 3015 - 3028
Main Authors Hu, Huan, Feng, Yaxiu, He, Ming-Liang
Format Journal Article
LanguageEnglish
Published Australia Ivyspring International Publisher Pty Ltd 01.01.2023
Ivyspring International Publisher
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Zika virus (ZIKV) infection causes neurological disorders and draws great attention. ZIKV infection can elicit a wide range of immune response. Type I interferons (IFNs) as well as its signaling cascade play crucial role in innate immunity against ZIKV infection and in turn ZIKV can antagonize them. ZIKV genome are mainly recognized by Toll-like receptors 3 (TLR3), TLR7/8 and RIG-I-like receptor 1 (RIG-1), which induces the expression of Type I IFNs and interferon-stimulated genes (ISGs). ISGs exert antiviral activity at different stages of the ZIKV life cycle. On the other hand, ZIKV takes multiple strategies to antagonize the Type Ⅰ IFN induction and its signaling pathway to establish a pathogenic infection, especially by using the viral nonstructural (NS) proteins. Most of the NS proteins can directly interact with the factors in the pathways to escape the innate immunity. In addition, structural proteins also participate in the innate immune evasion and activation of antibody-binding of blood dendritic cell antigen 2 (BDCA2) or inflammasome also be used to enhance ZIKV replication. In this review, we summarize the recent findings about the interaction between ZIKV infection and type I IFNs pathways and suggest potential strategies for antiviral drug development.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
Competing Interests: The authors have declared that no competing interest exists.
ISSN:1449-2288
1449-2288
DOI:10.7150/ijbs.83056