Induction of system A amino acid transport through long-term treatment with ouabain: correlation with increased (Na+/K+)-ATPase activity

Mouse embryo fibroblast cells (C3H-10T1/2) and the methylcholanthrene-transformed derivative (MCA-10T1/2) were treated with basal modified Eagle's medium (BME) containing 10% fetal bovine serum and varying concentrations of ouabain ranging from 0.05 mM to 0.7 mM for 16 h in culture. After repla...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 135; no. 2; p. 157
Main Authors Schenerman, M A, Leister, K J, Trachtenberg, D K, Racker, E
Format Journal Article
LanguageEnglish
Published United States 01.05.1988
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Mouse embryo fibroblast cells (C3H-10T1/2) and the methylcholanthrene-transformed derivative (MCA-10T1/2) were treated with basal modified Eagle's medium (BME) containing 10% fetal bovine serum and varying concentrations of ouabain ranging from 0.05 mM to 0.7 mM for 16 h in culture. After replacing the ouabain-containing medium with Earl's balanced salts solution, System A amino acid transport activity increased from approximately 40 to 500 pmol AIB accumulated.mg protein-1.min-1 in the C3H-10T1/2 cells and from approximately 300 to 700 pmol AIB accumulated.mg protein-1.min-1 in the MCA-10T1/2 cells. The (Na+/K+)-ATPase pump activity also increased from approximately 12 to 46 nmol Rb+ accumulated.mg protein-1.min-1 in the normal cells and from approximately 20 to 42 nmol Rb+ accumulated.mg protein-1.min-1 in the transformed cells. System A and the (Na+/K+)ATPase activity were maximally increased at approximately 0.4-0.6 mM ouabain in the normal cells in contrast to the transformed cells which were maximally stimulated at a concentration of approximately 0.2 mM ouabain. This treatment with ouabain increased the [Na+]i/[K+]i as measured by atomic absorption spectroscopy, and thereby decreased the Na+ and K+ electrochemical gradients. Our data show that the internal ion gradients inverted at a lower concentration of ouabain in the transformed cells compared to the normal cells. The ouabain-induced increase in pump and System A activity shown here was used as a tool to further investigate the coordinated ion transport regulation in the control of cell growth.
ISSN:0021-9541
DOI:10.1002/jcp.1041350202