Orthotopic Versus Allotopic Implantation: Comparison of Radiological and Pathological Characteristics

Background In experimental animal models, implantation location might influence the heterogeneity and overall development of the tumor, leading to an interpretation bias. Purpose To investigate the effects of implantation location in experimental tumor model using magnetic resonance imaging (MRI) an...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 55; no. 4; pp. 1133 - 1140
Main Authors Cai, YeYu, Chen, TaiLi, Liu, JiaYi, Peng, ShuHui, Liu, Huan, Lv, Min, Ding, ZhuYuan, Zhou, ZiYi, Li, Lan, Zeng, Shan, Xiao, EnHua
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.04.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background In experimental animal models, implantation location might influence the heterogeneity and overall development of the tumor, leading to an interpretation bias. Purpose To investigate the effects of implantation location in experimental tumor model using magnetic resonance imaging (MRI) and pathological findings. Study Type Prospective. Subjects Forty‐five breast cancer‐bearing mice underwent orthotopic (N = 15) and heterotopic (intrahepatic [N = 15] and subcutaneous [N = 15]) implantation. Field Strength/Sequence Sequences including: T1‐weighted turbo spin echo sequence, T2‐weighted blade sequence, diffusion‐weighted imaging, pre‐ and post‐contrast T1 mapping, multi‐echo T2 mapping at 3.0 T. Assessment MRI was performed at 7, 14, and 21 days after implantation. Native T1, post‐contrast T1, T2, and apparent diffusion coefficient (ADC) of tumors, the tumor volume and necrosis volume within tumor were obtained. Lymphocyte cells from H&E staining, Ki67‐positive, and CD31‐positive cells from immunohistochemistry were determined. Statistical Tests One‐way analysis of variance and Spearman's rank correlation were performed. P value <0.05 was considered statistically significant. Results The tumor volume (intrahepatic vs. orthotopic vs. subcutaneous: 587.50 ± 77.62 mm3 vs. 814.00 ± 43.85 mm3 vs. 956.13 ± 119.22 mm3), necrosis volume within tumor (89.10 ± 26.60 mm3 vs. 292.41 ± 57.92 mm3 vs. 179.91 ± 31.73 mm3, respectively), ADC at day 21 (543.41 ± 42.28 vs. 542.92 ± 99.67 vs. 369.83 ± 42.90, respectively), and post‐contrast T1 at all timepoints (day 7: 442.00 ± 11.52 vs. 435.00 ± 22.90 vs. 394.33 ± 29.95; day 14: 459.00 ± 26.11 vs. 436.83 ± 26.01 vs. 377.00 ± 27.83; day 21: 463.50 ± 23.49 vs. 458.00 ± 34.28 vs. 375.00 ± 30.55) were significantly different between three groups. Necrosis volumes of subcutaneous and intrahepatic tumors were significantly lower than those of orthotopic tumors. The CD31‐positive rate in the intrahepatic implantation was significantly higher than in orthotopic and subcutaneous groups. Necrosis volume (r = −0.71), ADC (r = −0.85), and post‐contrast T1 (r = −0.75) were strongly correlated with vascular invasion index. Data Conclusion Orthotopic and heterotopic tumors have their unique growth kinetics, necrosis volume, and vascular invasion. Non‐invasive MR quantitative parameters, including ADC and post‐contrast T1, may reflect vascular invasion in mice. Level of Evidence 1 Technical Efficacy Stage 3
Bibliography:YeYu Cai and TaiLi Chen contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1053-1807
1522-2586
DOI:10.1002/jmri.27940