Assessing transmission attribution risk from simulated sequencing data in HIV molecular epidemiology
Background:HIV molecular epidemiology (ME) is the analysis of sequence data together with individual-level clinical, demographic, and behavioral data to understand HIV epidemiology. The use of ME has raised concerns regarding identification of the putative source in direct transmission events. This...
Saved in:
Published in | AIDS (London) Vol. 38; no. 6; pp. 865 - 873 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hagerstown, MD
Lippincott Williams & Wilkins
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Background:HIV molecular epidemiology (ME) is the analysis of sequence data together with individual-level clinical, demographic, and behavioral data to understand HIV epidemiology. The use of ME has raised concerns regarding identification of the putative source in direct transmission events. This could result in harm ranging from stigma to criminal prosecution in some jurisdictions. Here we assessed the risks of ME using simulated HIV genetic sequencing data.Methods:We simulated social networks of men-who-have-sex-with-men, calibrating the simulations to data from San Diego. We used these networks to simulate consensus and next-generation sequence (NGS) data to evaluate the risks of identifying direct transmissions using different HIV sequence lengths, and population sampling depths. To identify the source of transmissions, we calculated infector probability and used phyloscanner software for the analysis of consensus and NGS data, respectively.Results:Consensus sequence analyses showed that the risk of correctly inferring the source (direct transmission) within identified transmission pairs was very small and independent of sampling depth. Alternatively, NGS analyses showed that identification of the source of a transmission was very accurate, but only for 6.5% of inferred pairs. False positive transmissions were also observed, where one or more unobserved intermediaries were present when compared to the true network.Conclusion:Source attribution using consensus sequences rarely infers direct transmission pairs with high confidence but is still useful for population studies. In contrast, source attribution using NGS data was much more accurate in identifying direct transmission pairs, but for only a small percentage of transmission pairs analyzed. |
---|---|
Bibliography: | Correspondence to Erik M. Volz, MRC Centre for Global Infectious Disease Analysis and the Department of Infectious Disease Epidemiology, Imperial College London, W2 1PG, London, UK. E-mail: e.volz@imperial.ac.ukReceived 7 March, 2023Revised 8 December, 2023Accepted 14 December, 2023Supplemental digital content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal's Website (http://www.AIDSonline.com). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0269-9370 1473-5571 1473-5571 |
DOI: | 10.1097/QAD.0000000000003820 |