Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient
This study examines a new method for the remote loading of doxorubicin into liposomes. It was shown that doxorubicin can be loaded to a level of up to 98% into large unilamellar vesicles composed of egg phosphatidylcholine/cholesterol (7/3 mol/mol) with a transmembrane phosphate gradient. The differ...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1758; no. 10; pp. 1633 - 1640 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.10.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This study examines a new method for the remote loading of doxorubicin into liposomes. It was shown that doxorubicin can be loaded to a level of up to 98% into large unilamellar vesicles composed of egg phosphatidylcholine/cholesterol (7/3 mol/mol) with a transmembrane phosphate gradient. The different encapsulation efficiencies which were achieved with ammonium salts (citrate 100%, phosphate 98%, sulfate 95%, acetate 77%) were significantly higher as compared to the loading via sodium salts (citrate 54%, phosphate 52%, sulfate 44%, acetate 16%). Various factors, including pH-value, buffer capacity, solubility of doxorubicin in different salt solutions and base counter-flow, which likely has an influence on drug accumulation in the intraliposomal interior are taken into account. In contrast to other methods, the newly developed remote loading method exhibits a pH-dependant drug release property which may be effective in tumor tissues. At physiological pH-value doxorubicin is retained in the liposomes, whereas drug release is achieved by lowering the pH to 5.5 (approximately 25% release at 25 °C or 30% at 37 °C within two h). The DXR release of liposomes which were loaded via a sulfate gradient showed a maximum of 3% at pH 5.5. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0005-2736 0006-3002 1879-2642 |
DOI: | 10.1016/j.bbamem.2006.05.028 |