In Vitro and in Silico Study of New Biscoumarin Glycosides from Paramignya trimera against Angiotensin-Converting Enzyme 2 (ACE-2) for Preventing SARS-CoV-2 Infection

In Vietnam, the stems and roots of the Rutaceous plant Paramignya trimera (Oliv.) Burkill (known locally as “Xáo tam phân”) are widely used to treat liver diseases such as viral hepatitis and acute and chronic cirrhosis. In an effort to search for Vietnamese natural compounds capable of inhibiting c...

Full description

Saved in:
Bibliographic Details
Published inChemical & pharmaceutical bulletin Vol. 72; no. 6; pp. 574 - 583
Main Authors Ha, Nguyen Xuan, Huong, Tran Thu, Khanh, Pham Ngoc, Hung, Nguyen Phi, Loc, Vu Thanh, Ha, Vu Thi, Quynh, Dang Thu, Nghi, Do Huu, Hai, Pham The, Scarlett, Christopher J., Wessjohann, Ludger A., Cuong, Nguyen Manh
Format Journal Article
LanguageEnglish
Published TOKYO The Pharmaceutical Society of Japan 26.06.2024
Pharmaceutical Soc Japan
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In Vietnam, the stems and roots of the Rutaceous plant Paramignya trimera (Oliv.) Burkill (known locally as “Xáo tam phân”) are widely used to treat liver diseases such as viral hepatitis and acute and chronic cirrhosis. In an effort to search for Vietnamese natural compounds capable of inhibiting coronavirus based on molecular docking screening, two new dimeric coumarin glycosides, namely cis-paratrimerin B (1) and cis-paratrimerin A (2), and two previously identified coumarins, the trans-isomers paratrimerin B (3) and paratrimerin A (4), were isolated from the roots of P. trimera and tested for their anti-angiotensin-converting enzyme 2 (ACE-2) inhibitory properties in vitro. It was discovered that ACE-2 enzyme was inhibited by cis-paratrimerin B (1), cis-paratrimerin A (2), and trans-paratrimerin B (3), with IC50 values of 28.9, 68, and 77 µM, respectively. Docking simulations revealed that four biscoumarin glycosides had good binding energies (∆G values ranging from −10.6 to −14.7 kcal/mol) and mostly bound to the S1′ subsite of the ACE-2 protein. The key interactions of these natural ligands include metal chelation with zinc ions and multiple H-bonds with Ser128, Glu145, His345, Lys363, Thr371, Glu406, and Tyr803. Our findings demonstrated that biscoumarin glycosides from P. trimera roots occur naturally in both cis- and trans-diastereomeric forms. The biscoumarin glycosides Lys363, Thr371, Glu406, and Tyr803. Our findings demonstrated that biscoumarin glycosides from P. trimera roots hold potential for further studies as natural ACE-2 inhibitors for preventing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0009-2363
1347-5223
1347-5223
DOI:10.1248/cpb.c23-00844