Use of fluorine-doped silicon oxide for temperature compensation of radio frequency surface acoustic wave devices

This paper investigates acoustic properties, including the temperature coefficient of elasticity (TCE), of fluorine-doped silicon oxide (SiOF) films and proposes the application of the films to the temperature compensation of RF SAW devices. From Fourier transform infrared spectroscopy (FT-IR), SiOF...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 59; no. 1; pp. 135 - 138
Main Authors Matsuda, S., Hara, M., Miura, M., Matsuda, T., Ueda, U. M., Satoh, Y., Hashimoto, K.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.01.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper investigates acoustic properties, including the temperature coefficient of elasticity (TCE), of fluorine-doped silicon oxide (SiOF) films and proposes the application of the films to the temperature compensation of RF SAW devices. From Fourier transform infrared spectroscopy (FT-IR), SiOF films were expected to possess good TCE properties. We fabricated a series of SAW devices using the SiOF-overlay/Cu-grating/LiNbO 3 -substrate structure, and evaluated their performance. The experiments showed that the temperature coefficient of frequency (TCF) increases with the fluorine content r, as we expected from the FT-IR measurement. This means that the Si-O-Si atomic structure measurable by the FT-IR governs the TCE behavior of SiO 2 -based films even when the dopant is added. In comparison with pure SiO 2 with the film thickness h of 0.3 wavelengths (λ), TCF was improved by 7.7 ppm/°C without deterioration of the effective electromechanical coupling factor K2 when r = 3.8 atomic % and h = 0.28λ. Fluorine inclusion did not obviously influence the resonators' Q factors when r <; 8.8 atomic %.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0885-3010
1525-8955
DOI:10.1109/TUFFC.2012.2164