Smoke Detection of Marine Engine Room Based on a Machine Vision Model (CWC-Yolov5s)

According to statistics, about 70% of ship fire accidents occur in the engine room, due to the complex internal structure and various combustible materials. Once a fire occurs, it is difficult to extinguish and significantly impacts the crew’s life and property. Therefore, it is urgent to design a m...

Full description

Saved in:
Bibliographic Details
Published inJournal of marine science and engineering Vol. 11; no. 8; p. 1564
Main Authors Zou, Yongjiu, Zhang, Jinqiu, Du, Taili, Jiang, Xingjia, Wang, Hao, Zhang, Peng, Zhang, Yuewen, Sun, Peiting
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:According to statistics, about 70% of ship fire accidents occur in the engine room, due to the complex internal structure and various combustible materials. Once a fire occurs, it is difficult to extinguish and significantly impacts the crew’s life and property. Therefore, it is urgent to design a method to detect the fire phenomenon in the engine room in real time. To address this problem, a machine vision model (CWC-YOLOv5s) is proposed, which can identify early fires through smoke detection methods. Firstly, a coordinate attention mechanism is added to the backbone of the baseline model (YOLOv5s) to enhance the perception of image feature information. The loss function of the baseline model is optimized by wise intersection over union, which speeds up the convergence and improves the effect of model checking. Then, the coordconv coordinate convolution layer replaces the standard convolution layer of the baseline model, which enhances the boundary information and improves the model regression accuracy. Finally, the proposed machine vision model is verified by using the ship video system and the laboratory smoke simulation bench. The results show that the proposed model has a detection precision of 91.8% and a recall rate of 88.1%, which are 2.2% and 4.6% higher than those of the baseline model.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2077-1312
2077-1312
DOI:10.3390/jmse11081564