A computational study of the effect of windscreen shape and flow resistivity on turbulent wind noise reduction

In this paper, numerical simulations are used to study the turbulent wind noise reduction effect of microphone windscreens with varying shapes and flow resistivities. Typical windscreen shapes consisting of circular, elliptical, and rectangular cylinders are investigated. A turbulent environment is...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of the Acoustical Society of America Vol. 129; no. 4; p. 1740
Main Authors Xu, Ying, Zheng, Z C, Wilson, D K
Format Journal Article
LanguageEnglish
Published United States 01.04.2011
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:In this paper, numerical simulations are used to study the turbulent wind noise reduction effect of microphone windscreens with varying shapes and flow resistivities. Typical windscreen shapes consisting of circular, elliptical, and rectangular cylinders are investigated. A turbulent environment is generated by placing a solid circular cylinder upstream of the microphone. An immersed-boundary method with a fifth-order weighted essentially non-oscillatory scheme is implemented to enhance the simulation accuracy for high-Reynolds number flow around the solid cylinder as well as at the interface between the open air and the porous material comprising the windscreen. The Navier-Stokes equations for incompressible flow are solved in the open air. For the flow inside the porous material, a modified form of the Zwikker-Kosten equation is solved. The results show that, on average, the circular and horizontal ellipse windscreens have similar overall wind noise reduction performance, while the horizontal ellipse windscreen with medium flow resistivity provides the most effective wind noise reduction among all the considered cases. The vertical ellipse windscreen with high flow resistivity, in particular, increases the wind noise because of increased self-generation of turbulence.
ISSN:1520-8524
DOI:10.1121/1.3552886