Activation of Hippo signaling pathway mediates mitochondria dysfunction and dilated cardiomyopathy in mice

Mitochondrial dysfunction facilitates heart failure development forming a therapeutic target, but the mechanism involved remains unclear. We studied whether the Hippo signaling pathway mediates mitochondrial abnormalities that results in onset of dilated cardiomyopathy (DCM). Mice with DCM due to ov...

Full description

Saved in:
Bibliographic Details
Published inTheranostics Vol. 11; no. 18; pp. 8993 - 9008
Main Authors Wu, Wei, Ziemann, Mark, Huynh, Kevin, She, Gang, Pang, Zheng-Da, Zhang, Yi, Duong, Thy, Kiriazis, Helen, Pu, Tian-Tian, Bai, Ru-Yue, Li, Jing-Jing, Zhang, Yu, Chen, Ming-Xia, Sadoshima, Junichi, Deng, Xiu-Ling, Meikle, Peter J, Du, Xiao-Jun
Format Journal Article
LanguageEnglish
Published Australia Ivyspring International Publisher Pty Ltd 01.01.2021
Ivyspring International Publisher
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mitochondrial dysfunction facilitates heart failure development forming a therapeutic target, but the mechanism involved remains unclear. We studied whether the Hippo signaling pathway mediates mitochondrial abnormalities that results in onset of dilated cardiomyopathy (DCM). Mice with DCM due to overexpression of Hippo pathway kinase Mst1 were studied. DCM phenotype was evident in adult animals but contractile dysfunction was identified as an early sign of DCM at 3 weeks postnatal. Electron microscopy, multi-omics and biochemical assays were employed. In 3-week and adult DCM mouse hearts, cardiomyocyte mitochondria exhibited overt structural abnormalities, smaller size and greater number. RNA sequencing revealed comprehensive suppression of nuclear-DNA (nDNA) encoded gene-sets involved in mitochondria turnover and all aspects of metabolism. Changes in cardiotranscriptome were confirmed by lower protein levels of multiple mitochondrial proteins in DCM heart of both ages. Mitochondrial DNA-encoded genes were also downregulated; due apparently to repression of nDNA-encoded transcriptional factors. Lipidomics identified remodeling in cardiolipin acyl-chains, increased acylcarnitine content but lower coenzyme Q10 level. Mitochondrial dysfunction was featured by lower ATP content and elevated levels of lactate, branched-chain amino acids and reactive oxidative species. Mechanistically, inhibitory YAP-phosphorylation was enhanced, which was associated with attenuated binding of transcription factor TEAD1. Numerous suppressed mitochondrial genes were identified as YAP-targets. Hippo signaling activation mediates mitochondrial damage by repressing mitochondrial genes, which causally promotes the development of DCM. The Hippo pathway therefore represents a therapeutic target against mitochondrial dysfunction in cardiomyopathy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
Competing Interests: The authors have declared that no competing interest exists.
ISSN:1838-7640
1838-7640
DOI:10.7150/thno.62302