Hidden Markov Model-Based Control for Cooperative Output Regulation of Heterogeneous Multi-Agent Systems under Switching Network Topology
This paper investigates the problem of stochastically cooperative output regulation of heterogeneous multi-agent systems (MASs) subject to hidden Markov jumps using observer-based distributed control. In order to address a more realistic situation than prior studies, this paper focuses on the follow...
Saved in:
Published in | Mathematics (Basel) Vol. 11; no. 16; p. 3481 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper investigates the problem of stochastically cooperative output regulation of heterogeneous multi-agent systems (MASs) subject to hidden Markov jumps using observer-based distributed control. In order to address a more realistic situation than prior studies, this paper focuses on the following issues: (1) asynchronous phenomena in the system mode’s transmission to the controller; (2) the impact of system mode switching on network topology; and (3) the emergence of coupled terms between the mode-dependent Lyapunov matrix and the control gain in control design conditions. Specifically, to reduce the complexity arising from the asynchronous controller-side mode, the leader–state observer is developed so that the solution pair of regulator equations can be integrated into the observer. Furthermore, a linear decoupling method is proposed to handle the emergence of the aforementioned coupled terms; this provides sufficient LMI conditions to achieve stochastically cooperative output regulation for heterogeneous MASs. Finally, the validity of the proposed method is shown through two illustrative examples. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math11163481 |