Freshwater trematodes differ from marine trematodes in patterns connected with division of labor

Prior research suggests that trematode rediae, a developmental stage of trematode parasites that reproduce clonally within a snail host, show evidence of division of labor (DOL). Single-species infections often have two morphologically distinct groups: small rediae, the 'soldiers', are act...

Full description

Saved in:
Bibliographic Details
Published inPeerJ (San Francisco, CA) Vol. 12; p. e17211
Main Authors Neal, Allison T, Stettner, Moira, Ortega-Cotto, Renytzabelle, Dieringer, Daniel, Reed, Lydia C
Format Journal Article
LanguageEnglish
Published United States PeerJ Inc 12.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Prior research suggests that trematode rediae, a developmental stage of trematode parasites that reproduce clonally within a snail host, show evidence of division of labor (DOL). Single-species infections often have two morphologically distinct groups: small rediae, the 'soldiers', are active, aggressive, and do not appear to reproduce; large rediae, the 'reproductives', are larger, sluggish, and full of offspring. Most data supporting DOL come from trematodes infecting marine snails, while data from freshwater trematodes are more limited and generally do not supported DOL. The shorter lifespan typical of freshwater snails may partially explain this difference: defending a short-lived host at the expense of reproduction likely provides few advantages. Here, we present data from sixty-one colonies spanning twenty species of freshwater trematode exploring morphological and behavioral patterns commonly reported from marine trematodes believed to have DOL. Trematode rediae were obtained from sixty-one infected snails collected in central Vermont, USA. A portion of the COI gene was sequenced to make tentative species identifications ('COI species'). Samples of rediae were photographed, observed, and measured to look for DOL-associated patterns including a bimodal size distribution, absence of embryos in small rediae, and pronounced appendages and enlarged pharynges (mouthparts) in small rediae. Additional rediae were used to compare activity levels and likelihood to attack heterospecific trematodes in large . small rediae. Many of the tests for DOL-associated patterns showed mixed results, even among colonies of the same COI species. However, we note a few consistent patterns. First, small rediae of most colonies appeared capable of reproduction, and we saw no indication (admittedly based on a small sample size and possibly insufficient attack trial methodology) that small rediae were more active or aggressive. This differs from patterns reported from most marine trematodes. Second, the small rediae of most colonies had larger pharynges relative to their body size than large rediae, consistent with marine trematodes. We also observed that colonies of three sampled COI species appear to produce a group of large rediae that have distinctly large pharynges. We conclude that these freshwater species likely do not have a group of specialized non-reproductive soldiers because small rediae of at least some colonies in almost every species do appear to produce embryos. We cannot rule out the possibility that small rediae act as a temporary soldier caste. We are intrigued by the presence of rediae with enlarged pharynges in some species and propose that they may serve an adaptive role, possibly similar to the defensive role of small 'soldier' rediae of marine trematodes. Large-pharynx rediae have been documented in other species previously, and we encourage future efforts to study these large-pharynx rediae.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2167-8359
2167-8359
DOI:10.7717/peerj.17211