Electromagnetic-acoustic high-Q silicon resonators for liquid phase sensing
Piezoelectric and electrostatic excitation are the standard transduction methods of ultrasonic sensors. However, electromagnetic-acoustic transduction has been demonstrated as a suitable alternative with unique advantages of noncontact excitation and multi-mode vibration in inexpensive materials, su...
Saved in:
Published in | IEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 57; no. 5; pp. 1000 - 1002 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.05.2010
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Piezoelectric and electrostatic excitation are the standard transduction methods of ultrasonic sensors. However, electromagnetic-acoustic transduction has been demonstrated as a suitable alternative with unique advantages of noncontact excitation and multi-mode vibration in inexpensive materials, such as thin metal plates. We have also demonstrated the use of high-Q silicon membranes as resonator elements. Here, we report on the utilization of these devices as liquid phase sensors for density and viscosity measurements. |
---|---|
Bibliography: | SourceType-Other Sources-1 content type line 63 ObjectType-Correspondence-1 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0885-3010 1525-8955 |
DOI: | 10.1109/TUFFC.2010.1511 |