Characterizing Chronologically Aged Basic Oxygen Furnace Slags as Aggregates and Their Use in Asphalt Concrete Mix as Filler

Before using basic oxygen furnace slag (BOFS) in any engineering application, it is important to determine its properties. The chemical composition, mineralogy, and physical properties of BOF slag are subject to large fluctuations as a result of different raw additives, different compositions of the...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 13; no. 18; p. 10126
Main Authors Nugmanova, Assel, Shon, Chang-Seon, Kim, Jong Ryeol, Rossi, Cesare Oliviero
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Before using basic oxygen furnace slag (BOFS) in any engineering application, it is important to determine its properties. The chemical composition, mineralogy, and physical properties of BOF slag are subject to large fluctuations as a result of different raw additives, different compositions of the molten iron used for producing the steel, oxygen stirring of a molten pool, uneven temperature fields, and other complex physical conditions. Thus, in this research, the engineering properties of BOF slag aggregates with different ages were identified, and then the feasibility of BOF slag aggregates in mortar application was investigated. It was found that stockpiled BOFS was harder than fresh BOF slag, which had lower aggregate crushing values and lower LA abrasion values. Also, stockpiled BOFS showed less expansion than fresh BOF slag regardless of water and 1 M NaOH solution immersion. The chemical reaction between f-CaO, f-MgO, and water due to weathering in the field extremely reduced the expansion of BOFS submerged in water. BOFS may contain reactive silica, which causes an alkali–silica reaction (ASR). Stockpiled BOFS (100%, 75%, 50%, 25%) used as a mineral filler in asphalt concrete mix brought about low tensile strength at break up (crack), low compressive strength at +50 °C, poor cohesion, and residual porosity. However, these parameters were partially improved with the use of a thermostable adhesive additive for road bitumen based on polyphosphoric acid esters. The comprehensive assessment in this study indicates that while some mixtures meet the specified criteria for certain properties, there are challenges, particularly regarding crack resistance and cohesion, that need to be addressed to fully align with the standard. Adjustments to the mixture proportions, the exploration of alternative additives, and the use of different types of fillers may be necessary to achieve the desired properties, especially in terms of crack resistance and cohesion.
ISSN:2076-3417
2076-3417
DOI:10.3390/app131810126