Adaptive PI Control Strategy for Flat Permanent Magnet Linear Synchronous Motor Vibration Suppression

Due to low damping ratio, fiat permanent magnet linear synchronous motor's vibration is difficult to be damped and the accuracy is limited. The vibration suppressing results are not good enough in the existing research because only the longitudinal direction vibration is considered while the normal...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of mechanical engineering Vol. 26; no. 1; pp. 11 - 20
Main Authors Meng, Fanwei, Liu, Chengying, Li, Zhijun, Wang, Liping
Format Journal Article
LanguageChinese
English
Published Beijing Chinese Mechanical Engineering Society 01.01.2013
Springer Nature B.V
Institute of Manufacturing Engineering, Tsinghua University, Beijing 100084, China
EditionEnglish ed.
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Due to low damping ratio, fiat permanent magnet linear synchronous motor's vibration is difficult to be damped and the accuracy is limited. The vibration suppressing results are not good enough in the existing research because only the longitudinal direction vibration is considered while the normal direction vibration is neglected. The parameters of the direct-axis current controller are set to be the same as those of the quadrature-axis current controller commonly. This causes contradiction between signal noise and response. To suppress the vibration, the electromagnetic force model of the flat permanent magnet synchronous linear motor is formulated first. Through the analysis of the effect that direct-axis current noise and quadrature-axis current noise have on both direction vibration, it can be declared that the conclusion that longitudinal direction vibration is only related to the quadrature-axis current noise while the normal direction vibration is related to both the quadrature-axis current noise and direct-axis current noise. Then, the simulation test on current loop with a low-pass filter is conducted and the results show that the low-pass filter can not suppress the vibration but makes the vibration more severe. So a vibration suppressing strategy that the proportional gain of direct-axis current controller adapted according to quadrature-axis reference current is proposed. This control strategy can suppress motor vibration by suppressing direct-axis current noise. The experiments results about the effect of Kp and Ti on normal direction vibration, longitudinal vibration and the position step response show that this strategy suppresses vibration effectively while the motor's motion performance is not affected. The maximum reduction of vibration can be up to 40%. In addition, current test under rated load condition is also conducted and the results show that the control strategy can avoid the conflict between the direct-axis current and the quadrature-axis current under typical load. Adaptive PI control strategy can effectively suppress the flat permanent magnet linear synchronous motor's vibration without affecting the motor's performance.
Bibliography:MENG Fanwei, LIU Chengying, LI Zhijun, and WANG Liping (Institute of Manufacturing Engineering, Tsinghua University, Beijing 100064, China)
11-2737/TH
Due to low damping ratio, fiat permanent magnet linear synchronous motor's vibration is difficult to be damped and the accuracy is limited. The vibration suppressing results are not good enough in the existing research because only the longitudinal direction vibration is considered while the normal direction vibration is neglected. The parameters of the direct-axis current controller are set to be the same as those of the quadrature-axis current controller commonly. This causes contradiction between signal noise and response. To suppress the vibration, the electromagnetic force model of the flat permanent magnet synchronous linear motor is formulated first. Through the analysis of the effect that direct-axis current noise and quadrature-axis current noise have on both direction vibration, it can be declared that the conclusion that longitudinal direction vibration is only related to the quadrature-axis current noise while the normal direction vibration is related to both the quadrature-axis current noise and direct-axis current noise. Then, the simulation test on current loop with a low-pass filter is conducted and the results show that the low-pass filter can not suppress the vibration but makes the vibration more severe. So a vibration suppressing strategy that the proportional gain of direct-axis current controller adapted according to quadrature-axis reference current is proposed. This control strategy can suppress motor vibration by suppressing direct-axis current noise. The experiments results about the effect of Kp and Ti on normal direction vibration, longitudinal vibration and the position step response show that this strategy suppresses vibration effectively while the motor's motion performance is not affected. The maximum reduction of vibration can be up to 40%. In addition, current test under rated load condition is also conducted and the results show that the control strategy can avoid the conflict between the direct-axis current and the quadrature-axis current under typical load. Adaptive PI control strategy can effectively suppress the flat permanent magnet linear synchronous motor's vibration without affecting the motor's performance.
permanent magnet motor, linear motor, motor vibration, vibration suppression
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1000-9345
2192-8258
DOI:10.3901/CJME.2013.01.011