Knowledge Reasoning via Jointly Modeling Knowledge Graphs and Soft Rules

Knowledge graphs (KGs) play a crucial role in many applications, such as question answering, but incompleteness is an urgent issue for their broad application. Much research in knowledge graph completion (KGC) has been performed to resolve this issue. The methods of KGC can be classified into two ma...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 13; no. 19; p. 10660
Main Authors Lan, Yinyu, He, Shizhu, Liu, Kang, Zhao, Jun
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Knowledge graphs (KGs) play a crucial role in many applications, such as question answering, but incompleteness is an urgent issue for their broad application. Much research in knowledge graph completion (KGC) has been performed to resolve this issue. The methods of KGC can be classified into two major categories: rule-based reasoning and embedding-based reasoning. The former has high accuracy and good interpretability, but a major challenge is to obtain effective rules on large-scale KGs. The latter has good efficiency and scalability, but it relies heavily on data richness and cannot fully use domain knowledge in the form of logical rules. We propose a novel method that injects rules and learns representations iteratively to take full advantage of rules and embeddings. Specifically, we model the conclusions of rule groundings as 0–1 variables and use a rule confidence regularizer to remove the uncertainty of the conclusions. The proposed approach has the following advantages: (1) It combines the benefits of both rules and knowledge graph embeddings (KGEs) and achieves a good balance between efficiency and scalability. (2) It uses an iterative method to continuously improve KGEs and remove incorrect rule conclusions. Evaluations of two public datasets show that our method outperforms the current state-of-the-art methods, improving performance by 2.7% and 4.3% in mean reciprocal rank (MRR).
ISSN:2076-3417
2076-3417
DOI:10.3390/app131910660