An Overdispersed Black-Box Variational Bayesian–Kalman Filter with Inaccurate Noise Second-Order Statistics

Aimed at the problems in which the performance of filters derived from a hypothetical model will decline or the cost of time of the filters derived from a posterior model will increase when prior knowledge and second-order statistics of noise are uncertain, a new filter is proposed. In this paper, a...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 22; p. 7673
Main Authors Cao, Lin, Zhang, Chuyuan, Zhao, Zongmin, Wang, Dongfeng, Du, Kangning, Fu, Chong, Gu, Jianfeng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 18.11.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Aimed at the problems in which the performance of filters derived from a hypothetical model will decline or the cost of time of the filters derived from a posterior model will increase when prior knowledge and second-order statistics of noise are uncertain, a new filter is proposed. In this paper, a Bayesian robust Kalman filter based on posterior noise statistics (KFPNS) is derived, and the recursive equations of this filter are very similar to that of the classical algorithm. Note that the posterior noise distributions are approximated by overdispersed black-box variational inference (O-BBVI). More precisely, we introduce an overdispersed distribution to push more probability density to the tails of variational distribution and incorporated the idea of importance sampling into two strategies of control variates and Rao–Blackwellization in order to reduce the variance of estimators. As a result, the convergence process will speed up. From the simulations, we can observe that the proposed filter has good performance for the model with uncertain noise. Moreover, we verify the proposed algorithm by using a practical multiple-input multiple-output (MIMO) radar system.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s21227673