The role of surface plasmons in organic light-emitting diodes
Organic light-emitting diodes typically take the form of an optical microcavity in which one layer is a metallic cathode. Coupling between emissive species in the light emitting layer and surface plasmon (SP) modes associated with the metallic cathode result in a loss of efficiency; an aspect often...
Saved in:
Published in | IEEE journal of selected topics in quantum electronics Vol. 8; no. 2; pp. 378 - 386 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2002
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Organic light-emitting diodes typically take the form of an optical microcavity in which one layer is a metallic cathode. Coupling between emissive species in the light emitting layer and surface plasmon (SP) modes associated with the metallic cathode result in a loss of efficiency; an aspect often discussed but not so far fully quantified. Here we numerically model the extent of this problem, both for organic light-emitting diodes based on small molecules (Alq/sub 3/) and those based on conjugated polymers (MEH-PPV). We show that SP modes can significantly detract from device efficiency, particularly those based on small molecules. We then report measurements of photo- and electroluminescence from organic light-emitting diodes incorporating wavelength scale periodic structure. These data demonstrate the existence of the SP modes in organic light-emitting diodes. Finally we consider ways in which the problems associated with SPs might be overcome, and may even be turned to advantage. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1077-260X 1558-4542 |
DOI: | 10.1109/2944.999193 |