Fenton-like Degradation of Methylene Blue on Attapulgite Clay Composite by Loading of Iron–Oxide: Eco-Friendly Preparation and Its Catalytic Activity

The continuous discharge of organic dyes into freshwater resources poses a long-term hazard to aquatic life. The advanced oxidation Fenton process is a combo of adsorption and degradation of pollutants to detoxify toxic effluents, such as anti-bacterial drugs, antibiotics, and organic dyes. In this...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 17; no. 11; p. 2615
Main Authors Karim, Naveed, Kyawoo, Tin, Jiang, Chao, Ahmed, Saeed, Tian, Weiliang, Li, Huiyu, Feng, Yongjun
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The continuous discharge of organic dyes into freshwater resources poses a long-term hazard to aquatic life. The advanced oxidation Fenton process is a combo of adsorption and degradation of pollutants to detoxify toxic effluents, such as anti-bacterial drugs, antibiotics, and organic dyes. In this work, an activated attapulgite clay-loaded iron-oxide (A-ATP@Fe3O4) was produced using a two-step reaction, in which attapulgite serves as an enrichment matrix and Fe3O4 functions as the active degrading component. The maximum adsorption capacity (qt) was determined by assessing the effect of temperature, pH H2O2, and adsorbent. The results showed that the A-ATP@Fe3O4 achieves the highest removal rate of 99.6% under optimum conditions: 40 °C, pH = 3, H2O2 25 mM, and 0.1 g dosage of the composite. The dye removal procedure achieved adsorption and degradation equilibrium in 120 and 30 min, respectively, by following the same processes as the advanced oxidation approach. Catalytic activity, kinetics, and specified surface characteristics suggest that A-ATP@Fe3O4 is one of the most promising candidates for advanced oxidation-enrooted removal of organic dyes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma17112615