Recent Advances in Stochastic Gradient Descent in Deep Learning
In the age of artificial intelligence, the best approach to handling huge amounts of data is a tremendously motivating and hard problem. Among machine learning models, stochastic gradient descent (SGD) is not only simple but also very effective. This study provides a detailed analysis of contemporar...
Saved in:
Published in | Mathematics (Basel) Vol. 11; no. 3; p. 682 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In the age of artificial intelligence, the best approach to handling huge amounts of data is a tremendously motivating and hard problem. Among machine learning models, stochastic gradient descent (SGD) is not only simple but also very effective. This study provides a detailed analysis of contemporary state-of-the-art deep learning applications, such as natural language processing (NLP), visual data processing, and voice and audio processing. Following that, this study introduces several versions of SGD and its variant, which are already in the PyTorch optimizer, including SGD, Adagrad, adadelta, RMSprop, Adam, AdamW, and so on. Finally, we propose theoretical conditions under which these methods are applicable and discover that there is still a gap between theoretical conditions under which the algorithms converge and practical applications, and how to bridge this gap is a question for the future. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math11030682 |