Classification of Children With Autism and Typical Development Using Eye-Tracking Data From Face-to-Face Conversations: Machine Learning Model Development and Performance Evaluation

Background Previous studies have shown promising results in identifying individuals with autism spectrum disorder (ASD) by applying machine learning (ML) to eye-tracking data collected while participants viewed varying images (ie, pictures, videos, and web pages). Although gaze behavior is known to...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical Internet research Vol. 23; no. 8; p. e29328
Main Authors Zhao, Zhong, Tang, Haiming, Zhang, Xiaobin, Qu, Xingda, Hu, Xinyao, Lu, Jianping
Format Journal Article
LanguageEnglish
Published Toronto, Canada JMIR Publications 26.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background Previous studies have shown promising results in identifying individuals with autism spectrum disorder (ASD) by applying machine learning (ML) to eye-tracking data collected while participants viewed varying images (ie, pictures, videos, and web pages). Although gaze behavior is known to differ between face-to-face interaction and image-viewing tasks, no study has investigated whether eye-tracking data from face-to-face conversations can also accurately identify individuals with ASD. Objective The objective of this study was to examine whether eye-tracking data from face-to-face conversations could classify children with ASD and typical development (TD). We further investigated whether combining features on visual fixation and length of conversation would achieve better classification performance. Methods Eye tracking was performed on children with ASD and TD while they were engaged in face-to-face conversations (including 4 conversational sessions) with an interviewer. By implementing forward feature selection, four ML classifiers were used to determine the maximum classification accuracy and the corresponding features: support vector machine (SVM), linear discriminant analysis, decision tree, and random forest. Results A maximum classification accuracy of 92.31% was achieved with the SVM classifier by combining features on both visual fixation and session length. The classification accuracy of combined features was higher than that obtained using visual fixation features (maximum classification accuracy 84.62%) or session length (maximum classification accuracy 84.62%) alone. Conclusions Eye-tracking data from face-to-face conversations could accurately classify children with ASD and TD, suggesting that ASD might be objectively screened in everyday social interactions. However, these results will need to be validated with a larger sample of individuals with ASD (varying in severity and balanced sex ratio) using data collected from different modalities (eg, eye tracking, kinematic, electroencephalogram, and neuroimaging). In addition, individuals with other clinical conditions (eg, developmental delay and attention deficit hyperactivity disorder) should be included in similar ML studies for detecting ASD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1438-8871
1439-4456
1438-8871
DOI:10.2196/29328