Gas turbine performance enhancement via utilizing different integrated turbine inlet cooling techniques
Regions that experience ambient temperatures rising during hot seasons have significant losses and impacts on both output power and efficiency of the gas turbine. When the ambient temperature increases, the air mass flow rate decreases, and hence leads to reduce the gas turbine produced power. Ambie...
Saved in:
Published in | Alexandria engineering journal Vol. 55; no. 3; pp. 1903 - 1914 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2016
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Regions that experience ambient temperatures rising during hot seasons have significant losses and impacts on both output power and efficiency of the gas turbine. When the ambient temperature increases, the air mass flow rate decreases, and hence leads to reduce the gas turbine produced power. Ambient air can be cooled by using either evaporative cooler or absorption chiller. Currently, the performance was simulated thermodynamically for a natural gas operated gas turbine. The performance was tested for the base case without any turbine inlet cooling (TIC) systems and compared with the performance for both evaporative cooler and absorption chiller separately in terms of output power, thermal efficiency, heat rate, specific fuel consumption, consumed fuel mass flow rate, and economics. Results showed that at air ambient temperature equals to 37°C and after deducting all the associated auxiliaries power consumption for both evaporative cooler and absorption chiller, the absorption chiller with regenerator can achieve an augmentation of 25.47% in power and 33.66% in efficiency which provides a saving in average power price about 13%, while the evaporative cooler provides only an increase of 5.56% in power and 1.55% in efficiency, and a saving of 3% in average power price. |
---|---|
AbstractList | Regions that experience ambient temperatures rising during hot seasons have significant losses and impacts on both output power and efficiency of the gas turbine. When the ambient temperature increases, the air mass flow rate decreases, and hence leads to reduce the gas turbine produced power. Ambient air can be cooled by using either evaporative cooler or absorption chiller. Currently, the performance was simulated thermodynamically for a natural gas operated gas turbine. The performance was tested for the base case without any turbine inlet cooling (TIC) systems and compared with the performance for both evaporative cooler and absorption chiller separately in terms of output power, thermal efficiency, heat rate, specific fuel consumption, consumed fuel mass flow rate, and economics. Results showed that at air ambient temperature equals to 37 °C and after deducting all the associated auxiliaries power consumption for both evaporative cooler and absorption chiller, the absorption chiller with regenerator can achieve an augmentation of 25.47% in power and 33.66% in efficiency which provides a saving in average power price about 13%, while the evaporative cooler provides only an increase of 5.56% in power and 1.55% in efficiency, and a saving of 3% in average power price. Regions that experience ambient temperatures rising during hot seasons have significant losses and impacts on both output power and efficiency of the gas turbine. When the ambient temperature increases, the air mass flow rate decreases, and hence leads to reduce the gas turbine produced power. Ambient air can be cooled by using either evaporative cooler or absorption chiller. Currently, the performance was simulated thermodynamically for a natural gas operated gas turbine. The performance was tested for the base case without any turbine inlet cooling (TIC) systems and compared with the performance for both evaporative cooler and absorption chiller separately in terms of output power, thermal efficiency, heat rate, specific fuel consumption, consumed fuel mass flow rate, and economics. Results showed that at air ambient temperature equals to 37°C and after deducting all the associated auxiliaries power consumption for both evaporative cooler and absorption chiller, the absorption chiller with regenerator can achieve an augmentation of 25.47% in power and 33.66% in efficiency which provides a saving in average power price about 13%, while the evaporative cooler provides only an increase of 5.56% in power and 1.55% in efficiency, and a saving of 3% in average power price. |
Author | Elhelw, Mohamed Sorour, Medhat M. El-Maghlany, Wael M. El-Shazly, Alaa A. |
Author_xml | – sequence: 1 givenname: Alaa A. surname: El-Shazly fullname: El-Shazly, Alaa A. – sequence: 2 givenname: Mohamed surname: Elhelw fullname: Elhelw, Mohamed – sequence: 3 givenname: Medhat M. surname: Sorour fullname: Sorour, Medhat M. – sequence: 4 givenname: Wael M. surname: El-Maghlany fullname: El-Maghlany, Wael M. email: elmaghlany@alexu.edu.eg, elmaghlany@yahoo.com |
BookMark | eNp9kMtuwyAQRVmkUtM0H9CdfyAuY4Mf6qqK-ogUqZt2jTAMDpaDU0witV9f3FRZls2gK-4Bzg2ZucEhIXdAU6BQ3HepxC7N4jalZUrzYkbmAEBXMamuyXIcOxoXL2tWF3PSvsgxCUffWIfJAb0Z_F46hQm63TT36EJysjI5Btvbb-vaRFtj0E-5dQFbLwPqC8K6HkOihqGfjgZUO2c_jzjekisj-xGXf3NBPp6f3tevq-3by2b9uF0pRouwyppcZ3VuUFaUG8ZUyVkty0opA4zXCBmt8kxmTcEbllWcA2PAmampLJsqx3xBNmeuHmQnDt7upf8Sg7TiNxh8K6QPVvUoJChAYAXX2jCq80aZeFlZKA0ZVAiRBWeW8sM4ejQXHlAxyRadiLLFJFvQUkTZsfNw7mD85MmiF6OyGEVq61GF-Ar7T_sHNfWMXw |
CitedBy_id | crossref_primary_10_5937_jaes0_40545 crossref_primary_10_1016_j_energy_2020_118843 crossref_primary_10_1016_j_tsep_2023_101828 crossref_primary_10_1007_s40430_020_2216_7 crossref_primary_10_1088_1755_1315_159_1_012040 crossref_primary_10_1016_j_energy_2022_126583 crossref_primary_10_3390_en14051382 crossref_primary_10_1016_j_tsep_2018_09_006 crossref_primary_10_1007_s12053_018_9731_8 crossref_primary_10_1002_er_6561 crossref_primary_10_1088_1757_899X_886_1_012041 crossref_primary_10_1016_j_aej_2021_10_045 crossref_primary_10_1016_j_egyr_2021_08_202 crossref_primary_10_1016_j_ijrefrig_2020_08_008 crossref_primary_10_1016_j_energy_2017_11_044 crossref_primary_10_1016_j_aej_2020_04_050 crossref_primary_10_3390_en16145352 crossref_primary_10_1007_s10973_020_09955_7 crossref_primary_10_1016_j_csite_2023_103734 crossref_primary_10_1016_j_enconman_2019_112063 crossref_primary_10_1016_j_energy_2019_116133 crossref_primary_10_1016_j_ecmx_2022_100316 |
Cites_doi | 10.5028/jatm.2012.04032012 10.1016/j.applthermaleng.2012.06.018 10.1016/j.energy.2005.09.010 10.1016/j.applthermaleng.2003.09.006 10.1016/0306-2619(91)90071-5 10.1016/j.applthermaleng.2015.06.018 10.1016/S1359-4311(03)00239-4 10.1016/j.enconman.2006.10.015 10.1016/0890-4332(95)90036-5 10.1016/j.energy.2014.02.066 10.1016/j.applthermaleng.2004.11.007 10.1016/j.applthermaleng.2010.04.025 |
ContentType | Journal Article |
Copyright | 2016 Faculty of Engineering, Alexandria University |
Copyright_xml | – notice: 2016 Faculty of Engineering, Alexandria University |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.aej.2016.07.036 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 1914 |
ExternalDocumentID | oai_doaj_org_article_a1c1e1465ddf40d3bcf54976cd1218e1 10_1016_j_aej_2016_07_036 S1110016816302162 |
GroupedDBID | --K 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ XH2 AAYXX ADVLN AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c406t-2b3d293fea805f44c7549a78ccf1459e120832a2b65b42855144154f90a7b83e3 |
IEDL.DBID | IXB |
ISSN | 1110-0168 |
IngestDate | Tue Oct 22 15:12:27 EDT 2024 Thu Sep 26 17:30:17 EDT 2024 Wed May 17 00:06:45 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Evaporative cooling Inlet-air cooling Gas turbine Absorption chiller |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-2b3d293fea805f44c7549a78ccf1459e120832a2b65b42855144154f90a7b83e3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1110016816302162 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a1c1e1465ddf40d3bcf54976cd1218e1 crossref_primary_10_1016_j_aej_2016_07_036 elsevier_sciencedirect_doi_10_1016_j_aej_2016_07_036 |
PublicationCentury | 2000 |
PublicationDate | September 2016 2016-09-00 2016-09-01 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: September 2016 |
PublicationDecade | 2010 |
PublicationTitle | Alexandria engineering journal |
PublicationYear | 2016 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Mohapatra, Sanjay (b0080) 2014 Mohanty, Paloso (b0050) 1995; 15 Razak (b0005) 2007 Alhazmy, Najjar (b0020) 2004; 24 Wang (b0035) 2000 Carmona (b0060) 2015 Nasser, EI-Kalay (b0025) 1991; 38 Mohapatra, Sanjay (b0075) 2014 Hosseini, Beshkani, Soltani (b0030) 2007; 48 Dawoud, Zurigat, Bortmany (b0055) 2005; 25 Al-Ibrahim, Varnham (b0010) 2010; 30 Boonnasa, Namprakai, Muangnapoh (b0045) 2006; 31 Santos, Andrade (b0070) 2012; 4 Jaber (b0015) 2007; 1 Ameri, Hejazi (b0040) 2004; 24 Popli, Rodgers, Eveloy (b0065) 2013; 50 Mohapatra (10.1016/j.aej.2016.07.036_b0075) 2014 Al-Ibrahim (10.1016/j.aej.2016.07.036_b0010) 2010; 30 Jaber (10.1016/j.aej.2016.07.036_b0015) 2007; 1 Razak (10.1016/j.aej.2016.07.036_b0005) 2007 Popli (10.1016/j.aej.2016.07.036_b0065) 2013; 50 Wang (10.1016/j.aej.2016.07.036_b0035) 2000 Mohapatra (10.1016/j.aej.2016.07.036_b0080) 2014 Ameri (10.1016/j.aej.2016.07.036_b0040) 2004; 24 Santos (10.1016/j.aej.2016.07.036_b0070) 2012; 4 Boonnasa (10.1016/j.aej.2016.07.036_b0045) 2006; 31 Hosseini (10.1016/j.aej.2016.07.036_b0030) 2007; 48 Mohanty (10.1016/j.aej.2016.07.036_b0050) 1995; 15 Dawoud (10.1016/j.aej.2016.07.036_b0055) 2005; 25 Carmona (10.1016/j.aej.2016.07.036_b0060) 2015 Nasser (10.1016/j.aej.2016.07.036_b0025) 1991; 38 Alhazmy (10.1016/j.aej.2016.07.036_b0020) 2004; 24 |
References_xml | – volume: 15 start-page: 41 year: 1995 end-page: 50 ident: b0050 article-title: Enhancing gas turbine performance by intake air cooling using an absorption chiller publication-title: Heat Recov. Syst. CHP contributor: fullname: Paloso – year: 2014 ident: b0080 article-title: Comparative analysis of inlet air cooling techniques integrated to cooled gas turbine plant publication-title: J. Energy Inst. contributor: fullname: Sanjay – volume: 1 start-page: 7 year: 2007 end-page: 15 ident: b0015 article-title: Assessment of power augmentation from gas turbine power plants using different inlet air cooling systems publication-title: Jordan J. Mech. Ind. Eng. contributor: fullname: Jaber – volume: 24 start-page: 415 year: 2004 end-page: 429 ident: b0020 article-title: Augmentation of gas turbine performance using air coolers publication-title: Appl. Therm. Eng. contributor: fullname: Najjar – year: 2015 ident: b0060 article-title: Gas turbine evaporative cooling evaluation for Lagos – Nigeria publication-title: Appl. Therm. Eng. contributor: fullname: Carmona – year: 2007 ident: b0005 article-title: Industrial Gas Turbines Performance and Operability contributor: fullname: Razak – volume: 38 start-page: 133 year: 1991 end-page: 142 ident: b0025 article-title: A heat-recovery cooling system to conserve energy in gas-turbine power stations in the Arabian Gulf publication-title: Appl. Energy contributor: fullname: EI-Kalay – volume: 4 start-page: 341 year: 2012 end-page: 353 ident: b0070 article-title: Analysis of gas turbine performance with inlet air cooling techniques applied to Brazilian sites publication-title: J. Aerosp. Technol. Manage. São José dos Campos contributor: fullname: Andrade – year: 2000 ident: b0035 article-title: Handbook of Air Conditioning and Refrigeration contributor: fullname: Wang – volume: 24 start-page: 59 year: 2004 end-page: 68 ident: b0040 article-title: The study of capacity enhancement of the Chabahar gas turbine installation using an absorption chiller publication-title: Appl. Therm. Eng. contributor: fullname: Hejazi – year: 2014 ident: b0075 article-title: Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance publication-title: Energy contributor: fullname: Sanjay – volume: 30 start-page: 1879 year: 2010 end-page: 1888 ident: b0010 article-title: A review of inlet air-cooling technologies for enhancing the performance of combustion turbines in Saudi Arabia publication-title: Appl. Therm. Eng. contributor: fullname: Varnham – volume: 25 start-page: 1579 year: 2005 end-page: 1598 ident: b0055 article-title: Thermodynamic assessment of power requirements and impact of different gas-turbine inlet air cooling techniques at two different locations in Oman publication-title: Appl. Therm. Eng. contributor: fullname: Bortmany – volume: 31 start-page: 2036 year: 2006 end-page: 2046 ident: b0045 article-title: Performance improvement of the combined cycle power plant by intake air cooling using an absorption chiller publication-title: Energy contributor: fullname: Muangnapoh – volume: 50 start-page: 918 year: 2013 end-page: 931 ident: b0065 article-title: Gas turbine efficiency enhancement using waste heat powered absorption chillers in the oil and gas industry publication-title: Appl. Therm. Eng. contributor: fullname: Eveloy – volume: 48 start-page: 1055 year: 2007 end-page: 1064 ident: b0030 article-title: Performance improvement of gas turbines of Fars (Iran) combined cycle power plant by intake air cooling using a media evaporative cooler publication-title: Energy Convers. Manage. contributor: fullname: Soltani – volume: 1 start-page: 7 issue: 1 year: 2007 ident: 10.1016/j.aej.2016.07.036_b0015 article-title: Assessment of power augmentation from gas turbine power plants using different inlet air cooling systems publication-title: Jordan J. Mech. Ind. Eng. contributor: fullname: Jaber – volume: 4 start-page: 341 year: 2012 ident: 10.1016/j.aej.2016.07.036_b0070 article-title: Analysis of gas turbine performance with inlet air cooling techniques applied to Brazilian sites publication-title: J. Aerosp. Technol. Manage. São José dos Campos doi: 10.5028/jatm.2012.04032012 contributor: fullname: Santos – volume: 50 start-page: 918 year: 2013 ident: 10.1016/j.aej.2016.07.036_b0065 article-title: Gas turbine efficiency enhancement using waste heat powered absorption chillers in the oil and gas industry publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.06.018 contributor: fullname: Popli – volume: 31 start-page: 2036 year: 2006 ident: 10.1016/j.aej.2016.07.036_b0045 article-title: Performance improvement of the combined cycle power plant by intake air cooling using an absorption chiller publication-title: Energy doi: 10.1016/j.energy.2005.09.010 contributor: fullname: Boonnasa – volume: 24 start-page: 415 year: 2004 ident: 10.1016/j.aej.2016.07.036_b0020 article-title: Augmentation of gas turbine performance using air coolers publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2003.09.006 contributor: fullname: Alhazmy – volume: 38 start-page: 133 year: 1991 ident: 10.1016/j.aej.2016.07.036_b0025 article-title: A heat-recovery cooling system to conserve energy in gas-turbine power stations in the Arabian Gulf publication-title: Appl. Energy doi: 10.1016/0306-2619(91)90071-5 contributor: fullname: Nasser – year: 2007 ident: 10.1016/j.aej.2016.07.036_b0005 contributor: fullname: Razak – year: 2015 ident: 10.1016/j.aej.2016.07.036_b0060 article-title: Gas turbine evaporative cooling evaluation for Lagos – Nigeria publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.06.018 contributor: fullname: Carmona – volume: 24 start-page: 59 year: 2004 ident: 10.1016/j.aej.2016.07.036_b0040 article-title: The study of capacity enhancement of the Chabahar gas turbine installation using an absorption chiller publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(03)00239-4 contributor: fullname: Ameri – volume: 48 start-page: 1055 year: 2007 ident: 10.1016/j.aej.2016.07.036_b0030 article-title: Performance improvement of gas turbines of Fars (Iran) combined cycle power plant by intake air cooling using a media evaporative cooler publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2006.10.015 contributor: fullname: Hosseini – volume: 15 start-page: 41 year: 1995 ident: 10.1016/j.aej.2016.07.036_b0050 article-title: Enhancing gas turbine performance by intake air cooling using an absorption chiller publication-title: Heat Recov. Syst. CHP doi: 10.1016/0890-4332(95)90036-5 contributor: fullname: Mohanty – year: 2000 ident: 10.1016/j.aej.2016.07.036_b0035 contributor: fullname: Wang – year: 2014 ident: 10.1016/j.aej.2016.07.036_b0080 article-title: Comparative analysis of inlet air cooling techniques integrated to cooled gas turbine plant publication-title: J. Energy Inst. doi: 10.1016/j.energy.2014.02.066 contributor: fullname: Mohapatra – volume: 25 start-page: 1579 year: 2005 ident: 10.1016/j.aej.2016.07.036_b0055 article-title: Thermodynamic assessment of power requirements and impact of different gas-turbine inlet air cooling techniques at two different locations in Oman publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2004.11.007 contributor: fullname: Dawoud – year: 2014 ident: 10.1016/j.aej.2016.07.036_b0075 article-title: Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance publication-title: Energy doi: 10.1016/j.energy.2014.02.066 contributor: fullname: Mohapatra – volume: 30 start-page: 1879 year: 2010 ident: 10.1016/j.aej.2016.07.036_b0010 article-title: A review of inlet air-cooling technologies for enhancing the performance of combustion turbines in Saudi Arabia publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2010.04.025 contributor: fullname: Al-Ibrahim |
SSID | ssj0000579496 |
Score | 2.2433355 |
Snippet | Regions that experience ambient temperatures rising during hot seasons have significant losses and impacts on both output power and efficiency of the gas... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1903 |
SubjectTerms | Absorption chiller Evaporative cooling Gas turbine Inlet-air cooling |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT4QwEG3MnvRg_Iz4lR48mRALFChHNa4bEz25yd6a0g4rG8NuXPTgr3dKgeVivHgiIVDIm8J7A9M3hFwlLIPCZqoi5crnGShfCB2hkMsFx1emEdouTn5-SSZT_jSLZ4NWX7YmzNkDO-BuVKADwMc5NqbgzES5LjClSRNtAmQncIkPywbJlHP1xnnWNOfCZ9lWXiWi-6XZFHcpWNiyLmfc2dgzb0ip8e4fcNOAb8Z7ZLcVivTW3eA-2YLqgOwM7AMPyfxRrSlSBia3QFebFQAUqje7tR_-6FepKE6u9_Ibz6FdP5Sa9j4Rph-irDCIVC9tH5857d1d10dkOn54vZ_4beMEXyM_136YRwZpvAAlWFxwrlOETKUIexHwOIMgROEVqjBP4hzTDyuakMd5kTGFIYogOiajalnBCaHWzR5QJ0BijWwEzw1AbDJmNOqOMGMeue6QkyvnjyG7wrGFRJilhVmyVCLMHrmz2PYHWmvrZgcGXLYBl38F3CO8i4xsVYJjfxyq_P3ap_9x7TOybYd0NWbnZFR_fMIFipI6v2zm3w-ebd2v priority: 102 providerName: Directory of Open Access Journals |
Title | Gas turbine performance enhancement via utilizing different integrated turbine inlet cooling techniques |
URI | https://dx.doi.org/10.1016/j.aej.2016.07.036 https://doaj.org/article/a1c1e1465ddf40d3bcf54976cd1218e1 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPEV5VB6YkKLm4bxGWvEQCAZERTfLsS8lFUqrUhj49dw5j5aBhSlKFCfRnXPfd8ndZ8YuIjeFnDLVJBbKESkoJ0l0gEQuSwSGTJNoak5-fIruRuJ-HI47bNj0wlBZZR37q5huo3V9pF9bsz8vij6-h6QfFCXIKBCobBwOEJ2piW88aL-zULOlsMt00fkODWh-btoyLwVTKvCqJDytUPMKnqyK_xpKrSHPzS7bqSkjv6qeao91oNxn22tCggdscqs-OIIHprnA56teAA7lG23pEyD_KhTHafZefOMY3qyMsuStYoRpL1GU6E6uZ7Siz4S3Oq8fh2x0c_0yvHPqJRQcjUi9dPwsMAjoOajEDXMhdIz5oIrRAbknwhQ8HymYr_wsCjNMRIg-IaKLPHUVOiuA4IhtlLMSjhknXXtAxgARSdokIjMAoUldo5GB-KnbZZeN5eS8UsqQTQnZVKKZJZlZurFEM3fZgGzbnkgi1_bAbDGRtZel8rQHGMlDY3LhmiDTOT59HGnjITEBr8tE4xn5a87gpYq_733yv2GnbIv2qvqyM7axXHzCORKSZdZjm1cPz68PPZvQ9-z8-wH2ld-- |
link.rule.ids | 315,783,787,867,2109,3515,27938,27939,45888 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGIAB8RTl6YEJKWoezmukFdDy6FSkbpZjX0oqlFYQGPj13OVFGViYIjmxY905d985d58ZuwzsGFKKVKNQKEvEoKwo0h4CuSQSaDJNpKk4-WkcDJ_F_dSfdtigqYWhtMra9lc2vbTWdUuvlmZvmWU9_A6JPyiIEFGgoyI7vE5ll5TXNZr2240WqrYU5Tld1MGiHs3fzTLPS8GcMrwqDs-SqfnHP5U0_ituasX13O6w7Roz8utqWrusA_ke21phEtxnszv1ztF7YJwLfPlTDMAhf6Er7QHyz0xxXGev2Rf24c3RKAVvKSNMO0SWoz65XtCRPjPeEr2-H7Dn25vJYGjVZyhYGl11YbmJZ9Cjp6Ai20-F0CEGhCpEDaSO8GNwXMRgrnKTwE8wEiH8hC5dpLGtUFseeIdsLV_kcMQ4EdsDQgYIiNMmEokB8E1sG40QxI3tLrtqJCeXFVWGbHLI5hLFLEnM0g4lirnL-iTb9kFiuS4bFm8zWatZKkc7gKbcNyYVtvESneLsw0AbB5EJOF0mGs3IX4sGh8r-fvfx_7pdsI3h5OlRPo7GDydsk-5UyWanbK14-4AzRCdFcl6uvm8YpOBU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gas+turbine+performance+enhancement+via+utilizing+different+integrated+turbine+inlet+cooling+techniques&rft.jtitle=Alexandria+engineering+journal&rft.au=El-Shazly%2C+Alaa+A.&rft.au=Elhelw%2C+Mohamed&rft.au=Sorour%2C+Medhat+M.&rft.au=El-Maghlany%2C+Wael+M.&rft.date=2016-09-01&rft.pub=Elsevier+B.V&rft.issn=1110-0168&rft.volume=55&rft.issue=3&rft.spage=1903&rft.epage=1914&rft_id=info:doi/10.1016%2Fj.aej.2016.07.036&rft.externalDocID=S1110016816302162 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon |