Gas turbine performance enhancement via utilizing different integrated turbine inlet cooling techniques

Regions that experience ambient temperatures rising during hot seasons have significant losses and impacts on both output power and efficiency of the gas turbine. When the ambient temperature increases, the air mass flow rate decreases, and hence leads to reduce the gas turbine produced power. Ambie...

Full description

Saved in:
Bibliographic Details
Published inAlexandria engineering journal Vol. 55; no. 3; pp. 1903 - 1914
Main Authors El-Shazly, Alaa A., Elhelw, Mohamed, Sorour, Medhat M., El-Maghlany, Wael M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2016
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Regions that experience ambient temperatures rising during hot seasons have significant losses and impacts on both output power and efficiency of the gas turbine. When the ambient temperature increases, the air mass flow rate decreases, and hence leads to reduce the gas turbine produced power. Ambient air can be cooled by using either evaporative cooler or absorption chiller. Currently, the performance was simulated thermodynamically for a natural gas operated gas turbine. The performance was tested for the base case without any turbine inlet cooling (TIC) systems and compared with the performance for both evaporative cooler and absorption chiller separately in terms of output power, thermal efficiency, heat rate, specific fuel consumption, consumed fuel mass flow rate, and economics. Results showed that at air ambient temperature equals to 37°C and after deducting all the associated auxiliaries power consumption for both evaporative cooler and absorption chiller, the absorption chiller with regenerator can achieve an augmentation of 25.47% in power and 33.66% in efficiency which provides a saving in average power price about 13%, while the evaporative cooler provides only an increase of 5.56% in power and 1.55% in efficiency, and a saving of 3% in average power price.
ISSN:1110-0168
DOI:10.1016/j.aej.2016.07.036