Gas turbine performance enhancement via utilizing different integrated turbine inlet cooling techniques
Regions that experience ambient temperatures rising during hot seasons have significant losses and impacts on both output power and efficiency of the gas turbine. When the ambient temperature increases, the air mass flow rate decreases, and hence leads to reduce the gas turbine produced power. Ambie...
Saved in:
Published in | Alexandria engineering journal Vol. 55; no. 3; pp. 1903 - 1914 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2016
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Regions that experience ambient temperatures rising during hot seasons have significant losses and impacts on both output power and efficiency of the gas turbine. When the ambient temperature increases, the air mass flow rate decreases, and hence leads to reduce the gas turbine produced power. Ambient air can be cooled by using either evaporative cooler or absorption chiller. Currently, the performance was simulated thermodynamically for a natural gas operated gas turbine. The performance was tested for the base case without any turbine inlet cooling (TIC) systems and compared with the performance for both evaporative cooler and absorption chiller separately in terms of output power, thermal efficiency, heat rate, specific fuel consumption, consumed fuel mass flow rate, and economics. Results showed that at air ambient temperature equals to 37°C and after deducting all the associated auxiliaries power consumption for both evaporative cooler and absorption chiller, the absorption chiller with regenerator can achieve an augmentation of 25.47% in power and 33.66% in efficiency which provides a saving in average power price about 13%, while the evaporative cooler provides only an increase of 5.56% in power and 1.55% in efficiency, and a saving of 3% in average power price. |
---|---|
ISSN: | 1110-0168 |
DOI: | 10.1016/j.aej.2016.07.036 |