Tensor Train-Based Higher-Order Dynamic Mode Decomposition for Dynamical Systems
Higher-order dynamic mode decomposition (HODMD) has proved to be an efficient tool for the analysis and prediction of complex dynamical systems described by data-driven models. In the present paper, we propose a realization of HODMD that is based on the low-rank tensor decomposition of potentially h...
Saved in:
Published in | Mathematics (Basel) Vol. 11; no. 8; p. 1809 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Higher-order dynamic mode decomposition (HODMD) has proved to be an efficient tool for the analysis and prediction of complex dynamical systems described by data-driven models. In the present paper, we propose a realization of HODMD that is based on the low-rank tensor decomposition of potentially high-dimensional datasets. It is used to compute the HODMD modes and eigenvalues to effectively reduce the computational complexity of the problem. The proposed extension also provides a more efficient realization of the ordinary dynamic mode decomposition with the use of the tensor-train decomposition. The high efficiency of the tensor-train-based HODMD (TT-HODMD) is illustrated by a few examples, including forecasting the load of a power system, which provides comparisons between TT-HODMD and HODMD with respect to the computing time and accuracy. The developed algorithm can be effectively used for the prediction of high-dimensional dynamical systems. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math11081809 |