Modeling the Kinematics of Human Locomotion Over Continuously Varying Speeds and Inclines

Powered knee and ankle prostheses can perform a limited number of discrete ambulation tasks. This is largely due to their control architecture, which uses a finite-state machine to select among a set of task-specific controllers. A non-switching controller that supports a continuum of tasks is expec...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 26; no. 12; pp. 2342 - 2350
Main Authors Embry, Kyle R., Villarreal, Dario J., Macaluso, Rebecca L., Gregg, Robert D.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Powered knee and ankle prostheses can perform a limited number of discrete ambulation tasks. This is largely due to their control architecture, which uses a finite-state machine to select among a set of task-specific controllers. A non-switching controller that supports a continuum of tasks is expected to better facilitate normative biomechanics. This paper introduces a predictive model that represents gait kinematics as a continuous function of gait cycle percentage, speed, and incline. The basis model consists of two parts: basis functions that produce kinematic trajectories over the gait cycle and task functions that smoothly alter the weight of basis functions in response to task. Kinematic data from 10 able-bodied subjects walking at 27 combinations of speed and incline generate training and validation data for this data-driven model. Convex optimization accurately fits the model to experimental data. Automated model order reduction improves predictive abilities by capturing only the most important kinematic changes due to walking tasks. Constraints on a range of motion and jerk ensure the safety and comfort of the user. This model produces a smooth continuum of trajectories over task, an impossibility for finite-state control algorithms. Random sub-sampling validation indicates that basis modeling predicts untrained kinematics more accurately than linear interpolation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2018.2879570