A redox-activated theranostic nanoagent: toward multi-mode imaging guided chemo-photothermal therapy
Development of tumor microenvironment responsive and modulating theranostic nano-systems is of great importance for specific and efficient cancer therapy. Herein, we report a redox-sensitive nanoagent combining manganese dioxide (MnO 2 ) and gold nanoshell coated silicon nanoparticles for synergisti...
Saved in:
Published in | Chemical science (Cambridge) Vol. 9; no. 33; pp. 6749 - 6757 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
07.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Development of tumor microenvironment responsive and modulating theranostic nano-systems is of great importance for specific and efficient cancer therapy. Herein, we report a redox-sensitive nanoagent combining manganese dioxide (MnO
2
) and gold nanoshell coated silicon nanoparticles for synergistic chemo-photothermal therapy of hypoxia solid tumors. In highly reducing tumor tissues, the outer MnO
2
nanosheet with the loaded drug would be dissociated by intracellular glutathione (GSH), resulting in on-demand drug release, as well as generating Mn
2+
ions which provided high contrast magnetic resonance imaging (MRI), and fluorescence imaging (FI)
in vitro
and
in vivo
. While upon near-infrared (NIR) light irradiation, the gold nanoshell modulated the hypoxic tumor microenvironment
via
increasing blood flow, achieving enhanced photothermal therapy (PTT) and chemotherapy. After tail vein injection into tumor-bearing mice and monitoring in real time, the intelligent redox-activated nanoagent exhibited high tumor accumulation and powerful synergistic chemo-photothermal therapy efficiency. The proposed work developed a noninvasive strategy to modulate the tumor microenvironment and enhance the anticancer therapeutic effect. We believe that this single nano-platform exhibits promising potential as a comprehensive theranostic agent to enhance the efficacies of synergistic cancer therapy. |
---|---|
AbstractList | Development of tumor microenvironment responsive and modulating theranostic nano-systems is of great importance for specific and efficient cancer therapy. Herein, we report a redox-sensitive nanoagent combining manganese dioxide (MnO
) and gold nanoshell coated silicon nanoparticles for synergistic chemo-photothermal therapy of hypoxia solid tumors. In highly reducing tumor tissues, the outer MnO
nanosheet with the loaded drug would be dissociated by intracellular glutathione (GSH), resulting in on-demand drug release, as well as generating Mn
ions which provided high contrast magnetic resonance imaging (MRI), and fluorescence imaging (FI)
and
. While upon near-infrared (NIR) light irradiation, the gold nanoshell modulated the hypoxic tumor microenvironment
increasing blood flow, achieving enhanced photothermal therapy (PTT) and chemotherapy. After tail vein injection into tumor-bearing mice and monitoring in real time, the intelligent redox-activated nanoagent exhibited high tumor accumulation and powerful synergistic chemo-photothermal therapy efficiency. The proposed work developed a noninvasive strategy to modulate the tumor microenvironment and enhance the anticancer therapeutic effect. We believe that this single nano-platform exhibits promising potential as a comprehensive theranostic agent to enhance the efficacies of synergistic cancer therapy. We construct a tumor redox microenvironment responsive core–shell therapeutic nanoagent for multi-mode imaging guided synergistic therapy in vitro and in vivo . Development of tumor microenvironment responsive and modulating theranostic nano-systems is of great importance for specific and efficient cancer therapy. Herein, we report a redox-sensitive nanoagent combining manganese dioxide (MnO 2 ) and gold nanoshell coated silicon nanoparticles for synergistic chemo-photothermal therapy of hypoxia solid tumors. In highly reducing tumor tissues, the outer MnO 2 nanosheet with the loaded drug would be dissociated by intracellular glutathione (GSH), resulting in on-demand drug release, as well as generating Mn 2+ ions which provided high contrast magnetic resonance imaging (MRI), and fluorescence imaging (FI) in vitro and in vivo . While upon near-infrared (NIR) light irradiation, the gold nanoshell modulated the hypoxic tumor microenvironment via increasing blood flow, achieving enhanced photothermal therapy (PTT) and chemotherapy. After tail vein injection into tumor-bearing mice and monitoring in real time, the intelligent redox-activated nanoagent exhibited high tumor accumulation and powerful synergistic chemo-photothermal therapy efficiency. The proposed work developed a noninvasive strategy to modulate the tumor microenvironment and enhance the anticancer therapeutic effect. We believe that this single nano-platform exhibits promising potential as a comprehensive theranostic agent to enhance the efficacies of synergistic cancer therapy. Development of tumor microenvironment responsive and modulating theranostic nano-systems is of great importance for specific and efficient cancer therapy. Herein, we report a redox-sensitive nanoagent combining manganese dioxide (MnO2) and gold nanoshell coated silicon nanoparticles for synergistic chemo-photothermal therapy of hypoxia solid tumors. In highly reducing tumor tissues, the outer MnO2 nanosheet with the loaded drug would be dissociated by intracellular glutathione (GSH), resulting in on-demand drug release, as well as generating Mn2+ ions which provided high contrast magnetic resonance imaging (MRI), and fluorescence imaging (FI) in vitro and in vivo. While upon near-infrared (NIR) light irradiation, the gold nanoshell modulated the hypoxic tumor microenvironment via increasing blood flow, achieving enhanced photothermal therapy (PTT) and chemotherapy. After tail vein injection into tumor-bearing mice and monitoring in real time, the intelligent redox-activated nanoagent exhibited high tumor accumulation and powerful synergistic chemo-photothermal therapy efficiency. The proposed work developed a noninvasive strategy to modulate the tumor microenvironment and enhance the anticancer therapeutic effect. We believe that this single nano-platform exhibits promising potential as a comprehensive theranostic agent to enhance the efficacies of synergistic cancer therapy. Development of tumor microenvironment responsive and modulating theranostic nano-systems is of great importance for specific and efficient cancer therapy. Herein, we report a redox-sensitive nanoagent combining manganese dioxide (MnO2) and gold nanoshell coated silicon nanoparticles for synergistic chemo-photothermal therapy of hypoxia solid tumors. In highly reducing tumor tissues, the outer MnO2 nanosheet with the loaded drug would be dissociated by intracellular glutathione (GSH), resulting in on-demand drug release, as well as generating Mn2+ ions which provided high contrast magnetic resonance imaging (MRI), and fluorescence imaging (FI) in vitro and in vivo. While upon near-infrared (NIR) light irradiation, the gold nanoshell modulated the hypoxic tumor microenvironment via increasing blood flow, achieving enhanced photothermal therapy (PTT) and chemotherapy. After tail vein injection into tumor-bearing mice and monitoring in real time, the intelligent redox-activated nanoagent exhibited high tumor accumulation and powerful synergistic chemo-photothermal therapy efficiency. The proposed work developed a noninvasive strategy to modulate the tumor microenvironment and enhance the anticancer therapeutic effect. We believe that this single nano-platform exhibits promising potential as a comprehensive theranostic agent to enhance the efficacies of synergistic cancer therapy.Development of tumor microenvironment responsive and modulating theranostic nano-systems is of great importance for specific and efficient cancer therapy. Herein, we report a redox-sensitive nanoagent combining manganese dioxide (MnO2) and gold nanoshell coated silicon nanoparticles for synergistic chemo-photothermal therapy of hypoxia solid tumors. In highly reducing tumor tissues, the outer MnO2 nanosheet with the loaded drug would be dissociated by intracellular glutathione (GSH), resulting in on-demand drug release, as well as generating Mn2+ ions which provided high contrast magnetic resonance imaging (MRI), and fluorescence imaging (FI) in vitro and in vivo. While upon near-infrared (NIR) light irradiation, the gold nanoshell modulated the hypoxic tumor microenvironment via increasing blood flow, achieving enhanced photothermal therapy (PTT) and chemotherapy. After tail vein injection into tumor-bearing mice and monitoring in real time, the intelligent redox-activated nanoagent exhibited high tumor accumulation and powerful synergistic chemo-photothermal therapy efficiency. The proposed work developed a noninvasive strategy to modulate the tumor microenvironment and enhance the anticancer therapeutic effect. We believe that this single nano-platform exhibits promising potential as a comprehensive theranostic agent to enhance the efficacies of synergistic cancer therapy. Development of tumor microenvironment responsive and modulating theranostic nano-systems is of great importance for specific and efficient cancer therapy. Herein, we report a redox-sensitive nanoagent combining manganese dioxide (MnO 2 ) and gold nanoshell coated silicon nanoparticles for synergistic chemo-photothermal therapy of hypoxia solid tumors. In highly reducing tumor tissues, the outer MnO 2 nanosheet with the loaded drug would be dissociated by intracellular glutathione (GSH), resulting in on-demand drug release, as well as generating Mn 2+ ions which provided high contrast magnetic resonance imaging (MRI), and fluorescence imaging (FI) in vitro and in vivo . While upon near-infrared (NIR) light irradiation, the gold nanoshell modulated the hypoxic tumor microenvironment via increasing blood flow, achieving enhanced photothermal therapy (PTT) and chemotherapy. After tail vein injection into tumor-bearing mice and monitoring in real time, the intelligent redox-activated nanoagent exhibited high tumor accumulation and powerful synergistic chemo-photothermal therapy efficiency. The proposed work developed a noninvasive strategy to modulate the tumor microenvironment and enhance the anticancer therapeutic effect. We believe that this single nano-platform exhibits promising potential as a comprehensive theranostic agent to enhance the efficacies of synergistic cancer therapy. |
Author | Zhao, Wei Gu, Yu Chen, Hong-Yuan Xu, Jing-Juan Zhang, Ting-Ting Xu, Cong-Hui Li, Xiang-Ling |
AuthorAffiliation | a State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China . Email: xlli@nju.edu.cn ; Email: xujj@nju.edu.cn |
AuthorAffiliation_xml | – name: a State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China . Email: xlli@nju.edu.cn ; Email: xujj@nju.edu.cn |
Author_xml | – sequence: 1 givenname: Ting-Ting surname: Zhang fullname: Zhang, Ting-Ting organization: State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023 – sequence: 2 givenname: Cong-Hui surname: Xu fullname: Xu, Cong-Hui organization: State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023 – sequence: 3 givenname: Wei surname: Zhao fullname: Zhao, Wei organization: State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023 – sequence: 4 givenname: Yu surname: Gu fullname: Gu, Yu organization: State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023 – sequence: 5 givenname: Xiang-Ling surname: Li fullname: Li, Xiang-Ling organization: State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023 – sequence: 6 givenname: Jing-Juan orcidid: 0000-0001-9579-9318 surname: Xu fullname: Xu, Jing-Juan organization: State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023 – sequence: 7 givenname: Hong-Yuan surname: Chen fullname: Chen, Hong-Yuan organization: State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30310607$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1rFTEUhoNUbK3d-ANkwI0Ioycf8xEXQrl-QsGFug6Z5MzclJnkmmSq_ffmctuqxWxyIM95eMP7mBz54JGQpxReUeDy9ab_ugEmRPvuATlhIGjdNlwe3c0MjslZSpdQDue0Yd0jcsyBU2ihOyH2vIpow69am-yudEZb5S1G7UPKzlS-DHpCn99UOfzU0VbLOmdXL8Fi5RY9OT9V0-ps2TNbXEK924Yc9opFzwfV7voJeTjqOeHZzX1Kvn94_23zqb748vHz5vyiNgLaXFNGbduMnFEhgHdjM4Bs7CA71gvGNDQS-2GQA2uQYitBDtpQMXa859iCHfkpeXvw7tZhQWtK7qhntYslabxWQTv174t3WzWFK9VSKqSURfDiRhDDjxVTVotLBudZewxrUoxSKRkAYwV9fg-9DGv05XuKgaScF6gv1LO_E91FuS2gAHAATAwpRRyVcVlnF_YB3awoqH3N6k_NZeXlvZVb63_g31jJp48 |
CitedBy_id | crossref_primary_10_1016_j_ccr_2023_215027 crossref_primary_10_1039_D2SC06143K crossref_primary_10_1021_acsabm_9b00329 crossref_primary_10_1039_D0CC02782K crossref_primary_10_1002_adhm_202101049 crossref_primary_10_1021_acs_analchem_2c03714 crossref_primary_10_3390_ph14010069 crossref_primary_10_1002_smll_202206592 crossref_primary_10_1016_j_cej_2019_123893 crossref_primary_10_1039_D0CS00607F crossref_primary_10_1016_j_actbio_2018_11_009 crossref_primary_10_1016_j_biomaterials_2019_119465 crossref_primary_10_1021_acs_analchem_1c01858 crossref_primary_10_1039_D2TB00600F crossref_primary_10_1021_acs_analchem_9b05820 crossref_primary_10_1080_21691401_2019_1687501 crossref_primary_10_1002_viw2_6 crossref_primary_10_1016_j_nantod_2022_101616 crossref_primary_10_1039_D0NR07121H crossref_primary_10_1016_j_apmt_2021_101027 crossref_primary_10_1039_C8CC08943D crossref_primary_10_1002_adfm_202110192 crossref_primary_10_1016_j_dyepig_2022_110095 crossref_primary_10_1021_acsabm_9b00475 crossref_primary_10_1039_C9NR04768A crossref_primary_10_1016_j_cej_2023_142970 crossref_primary_10_1039_D0RA01638A crossref_primary_10_1016_j_jconrel_2020_11_046 crossref_primary_10_1039_C9QI00894B crossref_primary_10_1002_VIW_20200141 crossref_primary_10_1016_j_nano_2021_102440 crossref_primary_10_1186_s12951_022_01295_y crossref_primary_10_1016_j_ijbiomac_2019_11_118 crossref_primary_10_1039_C9SC00985J crossref_primary_10_1016_j_chphma_2025_01_002 crossref_primary_10_1039_D0TB01021A crossref_primary_10_1039_D3BM01116J crossref_primary_10_1186_s12951_020_00761_9 crossref_primary_10_1007_s42114_022_00433_2 crossref_primary_10_1016_j_msec_2021_112504 crossref_primary_10_1016_j_ccr_2022_214540 crossref_primary_10_1016_j_dyepig_2019_03_009 crossref_primary_10_1021_acs_analchem_9b04996 crossref_primary_10_1016_j_ccr_2022_214821 crossref_primary_10_1016_j_biopha_2023_114833 crossref_primary_10_1016_j_eurpolymj_2022_111647 crossref_primary_10_1186_s12951_023_01769_7 crossref_primary_10_1039_C9NR07947E crossref_primary_10_1039_D2TC03749A crossref_primary_10_1039_C8NR08269C crossref_primary_10_1016_j_bioactmat_2020_08_023 crossref_primary_10_1002_chem_201904704 crossref_primary_10_1039_D0BM01855D crossref_primary_10_1039_D0RA10491D crossref_primary_10_1186_s12951_022_01579_3 crossref_primary_10_1016_j_pdpdt_2024_104063 crossref_primary_10_1039_D0NR04067C crossref_primary_10_1016_j_jconrel_2019_12_041 crossref_primary_10_1016_j_colsurfb_2019_110625 |
Cites_doi | 10.1126/scitranslmed.aan3682 10.1021/acsami.6b13876 10.1002/adma.201503006 10.1007/s10549-007-9742-1 10.1080/02656730902744171 10.1039/C6TB03066A 10.1021/cr5004634 10.1002/adhm.201500908 10.1021/ja312221g 10.1021/ac502553u 10.1016/j.yexmp.2009.01.004 10.1021/acsnano.6b06651 10.1038/nnano.2007.387 10.3109/02656731003596259 10.1016/j.actbio.2018.03.035 10.1038/cdd.2008.21 10.1002/adma.201405634 10.1002/adbi.201700084 10.1016/j.biomaterials.2004.02.013 10.1016/j.jconrel.2011.01.030 10.1002/adfm.201604258 10.1021/acs.jpcc.5b10454 10.1039/C5CS00798D 10.1158/0008-5472.CAN-11-3666 10.1021/bc200139n 10.1002/cbf.1149 10.1021/acs.nanolett.6b04269 10.1021/ja2100774 10.1021/jacs.7b11114 10.1021/jacs.6b01784 10.4333/KPS.2011.41.2.059 10.1016/0021-9797(68)90272-5 10.1039/C8SC00098K 10.1039/C7NR06479A 10.1002/adma.201404308 10.1016/j.biomaterials.2015.10.048 10.1038/nrc1478 10.1002/anie.201002820 10.1039/C6TB00438E 10.1021/ac401405n 10.1002/adma.201503381 10.1021/acsami.7b10608 10.1038/s41467-017-01050-0 10.1002/chem.201404625 10.1039/C7SC00700K |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 This journal is © The Royal Society of Chemistry 2018 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 – notice: This journal is © The Royal Society of Chemistry 2018 2018 |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/C8SC02446D |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 6757 |
ExternalDocumentID | PMC6114999 30310607 10_1039_C8SC02446D |
Genre | Journal Article |
GroupedDBID | 0-7 0R~ 53G 705 7~J AAEMU AAFWJ AAIWI AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABIQK ABPDG ABXOH ACGFS ACIWK ACRPL ADBBV ADMRA ADNMO AEFDR AENEX AESAV AETIL AFLYV AFPKN AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ANBJS ANLMG ANUXI AOIJS APEMP ASPBG AUDPV AVWKF AZFZN BCNDV BLAPV BSQNT C6K CAG CITATION COF D0L ECGLT EE0 EF- F5P FEDTE GROUPED_DOAJ H13 HVGLF HYE HZ~ H~N J3G J3H J3I L-8 O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS ROL RPM RPMJG RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH -JG AGSTE NPM SMJ 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c406t-121d65f32144037f5b095db9728422a059e8bb9b25e1e6909bac14f7383e60df3 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 14:01:31 EDT 2025 Fri Jul 11 12:04:15 EDT 2025 Fri Jul 25 03:30:36 EDT 2025 Wed Feb 19 02:43:44 EST 2025 Thu Apr 24 23:04:06 EDT 2025 Tue Jul 01 03:46:21 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
License | This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0) |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c406t-121d65f32144037f5b095db9728422a059e8bb9b25e1e6909bac14f7383e60df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to the work. |
ORCID | 0000-0001-9579-9318 |
OpenAccessLink | http://dx.doi.org/10.1039/c8sc02446d |
PMID | 30310607 |
PQID | 2091330228 |
PQPubID | 2047492 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6114999 proquest_miscellaneous_2119920022 proquest_journals_2091330228 pubmed_primary_30310607 crossref_citationtrail_10_1039_C8SC02446D crossref_primary_10_1039_C8SC02446D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-07 |
PublicationDateYYYYMMDD | 2018-09-07 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Wang (C8SC02446D-(cit15)/*[position()=1]) 2017; 1 Peer (C8SC02446D-(cit16)/*[position()=1]) 2007; 2 Zhu (C8SC02446D-(cit13)/*[position()=1]) 2017; 5 Zhou (C8SC02446D-(cit44)/*[position()=1]) 2016; 4 Balendiran (C8SC02446D-(cit4)/*[position()=1]) 2004; 22 Bao (C8SC02446D-(cit29)/*[position()=1]) 2016; 76 Shi (C8SC02446D-(cit37)/*[position()=1]) 2018; 72 Wang (C8SC02446D-(cit27)/*[position()=1]) 2013; 135 Yang (C8SC02446D-(cit25)/*[position()=1]) 2017; 8 Rankin (C8SC02446D-(cit7)/*[position()=1]) 2008; 15 Wong (C8SC02446D-(cit17)/*[position()=1]) 2015; 115 Song (C8SC02446D-(cit35)/*[position()=1]) 2015; 27 Li (C8SC02446D-(cit20)/*[position()=1]) 2017; 9 Aioub (C8SC02446D-(cit30)/*[position()=1]) 2017; 11 Cheng (C8SC02446D-(cit41)/*[position()=1]) 2011; 152 Deng (C8SC02446D-(cit23)/*[position()=1]) 2011; 133 Choi (C8SC02446D-(cit12)/*[position()=1]) 2011; 41 Wang (C8SC02446D-(cit39)/*[position()=1]) 2016; 120 Wang (C8SC02446D-(cit42)/*[position()=1]) 2011; 22 Yu (C8SC02446D-(cit11)/*[position()=1]) 2018; 9 Bates (C8SC02446D-(cit45)/*[position()=1]) 2009; 86 Li (C8SC02446D-(cit22)/*[position()=1]) 2014; 20 Stöber (C8SC02446D-(cit38)/*[position()=1]) 1968; 26 Jin (C8SC02446D-(cit21)/*[position()=1]) 2017; 9 Liu (C8SC02446D-(cit28)/*[position()=1]) 2011; 50 Chen (C8SC02446D-(cit46)/*[position()=1]) 2015; 27 Huang (C8SC02446D-(cit9)/*[position()=1]) 2016; 138 Liu (C8SC02446D-(cit40)/*[position()=1]) 2005; 26 Vaupel (C8SC02446D-(cit32)/*[position()=1]) 2010; 26 Yamamoto (C8SC02446D-(cit6)/*[position()=1]) 2008; 110 Song (C8SC02446D-(cit31)/*[position()=1]) 2009; 25 Bai (C8SC02446D-(cit34)/*[position()=1]) 2018; 140 Wang (C8SC02446D-(cit14)/*[position()=1]) 2018; 10 Song (C8SC02446D-(cit33)/*[position()=1]) 2015; 27 Li (C8SC02446D-(cit36)/*[position()=1]) 2014; 86 Ma (C8SC02446D-(cit24)/*[position()=1]) 2017; 27 Yu (C8SC02446D-(cit26)/*[position()=1]) 2017; 8 Ma (C8SC02446D-(cit2)/*[position()=1]) 2017; 17 Cai (C8SC02446D-(cit10)/*[position()=1]) 2015; 27 Hsu (C8SC02446D-(cit43)/*[position()=1]) 2016; 5 Thomas (C8SC02446D-(cit5)/*[position()=1]) 2012; 72 Karimi (C8SC02446D-(cit3)/*[position()=1]) 2016; 45 Gatenby (C8SC02446D-(cit1)/*[position()=1]) 2004; 4 Li (C8SC02446D-(cit19)/*[position()=1]) 2017; 9 Pan (C8SC02446D-(cit18)/*[position()=1]) 2013; 85 Schindl (C8SC02446D-(cit8)/*[position()=1]) 2002; 8 18259193 - Cell Death Differ. 2008 Apr;15(4):678-85 29091095 - Nanoscale. 2017 Nov 16;9(44):17318-17324 19454272 - Exp Mol Pathol. 2009 Jun;86(3):151-64 25885638 - Adv Mater. 2015 Jun 3;27(21):3285-91 26331476 - Adv Mater. 2015 Oct 28;27(40):6110-7 26393889 - Adv Mater. 2015 Nov 4;27(41):6382-9 29026068 - Nat Commun. 2017 Oct 12;8(1):902 25504416 - Adv Mater. 2015 Feb 4;27(5):903-10 26517561 - Biomaterials. 2016 Jan;76:11-24 25352246 - Chemistry. 2014 Dec 8;20(50):16488-91 21295087 - J Control Release. 2011 May 30;152(1):2-12 28004570 - ACS Appl Mater Interfaces. 2017 Jan 25;9(3):2123-2129 15516961 - Nat Rev Cancer. 2004 Nov;4(11):891-9 17805961 - Breast Cancer Res Treat. 2008 Aug;110(3):465-75 15193886 - Biomaterials. 2005 Jan;26(1):109-15 19337908 - Int J Hyperthermia. 2009 Mar;25(2):91-5 29467299 - Sci Transl Med. 2018 Feb 21;10(429):null 22107163 - J Am Chem Soc. 2011 Dec 21;133(50):20168-71 21866903 - Bioconjug Chem. 2011 Oct 19;22(10):1939-45 28959413 - Chem Sci. 2017 Jul 1;8(7):4896-4903 29780488 - Chem Sci. 2018 Mar 5;9(14):3563-3569 25264685 - Anal Chem. 2014 Oct 21;86(20):10239-45 27075956 - J Am Chem Soc. 2016 Apr 27;138(16):5222-5 28029783 - ACS Nano. 2017 Jan 24;11(1):579-586 15386533 - Cell Biochem Funct. 2004 Nov-Dec;22(6):343-52 29588255 - Acta Biomater. 2018 May;72:256-265 29268612 - J Am Chem Soc. 2018 Jan 10;140(1):106-109 20345270 - Int J Hyperthermia. 2010;26(3):211-23 23495667 - J Am Chem Soc. 2013 Mar 27;135(12):4799-804 26776487 - Chem Soc Rev. 2016 Mar 7;45(5):1457-501 23772649 - Anal Chem. 2013 Jul 16;85(14):6930-5 18654426 - Nat Nanotechnol. 2007 Dec;2(12):751-60 26895111 - Adv Healthc Mater. 2016 Mar;5(6):721-9 12060624 - Clin Cancer Res. 2002 Jun;8(6):1831-7 22926560 - Cancer Res. 2012 Nov 1;72(21):5600-12 21246685 - Angew Chem Int Ed Engl. 2011 Jan 24;50(4):891-5 29116748 - ACS Appl Mater Interfaces. 2017 Dec 6;9(48):41648-41658 25914945 - Chem Rev. 2015 May 13;115(9):3388-432 28139118 - Nano Lett. 2017 Feb 8;17(2):928-937 |
References_xml | – volume: 10 start-page: eaan3682 year: 2018 ident: C8SC02446D-(cit14)/*[position()=1] publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aan3682 – volume: 9 start-page: 2123 year: 2017 ident: C8SC02446D-(cit19)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13876 – volume: 27 start-page: 6110 year: 2015 ident: C8SC02446D-(cit33)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201503006 – volume: 110 start-page: 465 year: 2008 ident: C8SC02446D-(cit6)/*[position()=1] publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-007-9742-1 – volume: 25 start-page: 91 year: 2009 ident: C8SC02446D-(cit31)/*[position()=1] publication-title: Int. J. Hyperthermia doi: 10.1080/02656730902744171 – volume: 5 start-page: 1339 year: 2017 ident: C8SC02446D-(cit13)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C6TB03066A – volume: 115 start-page: 3388 year: 2015 ident: C8SC02446D-(cit17)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr5004634 – volume: 5 start-page: 721 year: 2016 ident: C8SC02446D-(cit43)/*[position()=1] publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201500908 – volume: 135 start-page: 4799 year: 2013 ident: C8SC02446D-(cit27)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312221g – volume: 86 start-page: 10239 year: 2014 ident: C8SC02446D-(cit36)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac502553u – volume: 86 start-page: 151 year: 2009 ident: C8SC02446D-(cit45)/*[position()=1] publication-title: Exp. Mol. Pathol. doi: 10.1016/j.yexmp.2009.01.004 – volume: 11 start-page: 579 year: 2017 ident: C8SC02446D-(cit30)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b06651 – volume: 2 start-page: 751 year: 2007 ident: C8SC02446D-(cit16)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.387 – volume: 26 start-page: 211 year: 2010 ident: C8SC02446D-(cit32)/*[position()=1] publication-title: Int. J. Hyperthermia doi: 10.3109/02656731003596259 – volume: 72 start-page: 256 year: 2018 ident: C8SC02446D-(cit37)/*[position()=1] publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.03.035 – volume: 15 start-page: 678 year: 2008 ident: C8SC02446D-(cit7)/*[position()=1] publication-title: Cell Death Differ. doi: 10.1038/cdd.2008.21 – volume: 27 start-page: 3285 year: 2015 ident: C8SC02446D-(cit35)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201405634 – volume: 1 start-page: 1700084 year: 2017 ident: C8SC02446D-(cit15)/*[position()=1] publication-title: Adv. Biosyst. doi: 10.1002/adbi.201700084 – volume: 26 start-page: 109 year: 2005 ident: C8SC02446D-(cit40)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.02.013 – volume: 152 start-page: 2 year: 2011 ident: C8SC02446D-(cit41)/*[position()=1] publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2011.01.030 – volume: 8 start-page: 1831 year: 2002 ident: C8SC02446D-(cit8)/*[position()=1] publication-title: Clin. Cancer Res. – volume: 27 start-page: 1604258 year: 2017 ident: C8SC02446D-(cit24)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604258 – volume: 120 start-page: 377 year: 2016 ident: C8SC02446D-(cit39)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b10454 – volume: 45 start-page: 1457 year: 2016 ident: C8SC02446D-(cit3)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00798D – volume: 72 start-page: 5600 year: 2012 ident: C8SC02446D-(cit5)/*[position()=1] publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-3666 – volume: 22 start-page: 1939 year: 2011 ident: C8SC02446D-(cit42)/*[position()=1] publication-title: Bioconjugate Chem. doi: 10.1021/bc200139n – volume: 22 start-page: 343 year: 2004 ident: C8SC02446D-(cit4)/*[position()=1] publication-title: Cell Biochem. Funct. doi: 10.1002/cbf.1149 – volume: 17 start-page: 928 year: 2017 ident: C8SC02446D-(cit2)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04269 – volume: 133 start-page: 20168 year: 2011 ident: C8SC02446D-(cit23)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2100774 – volume: 140 start-page: 106 year: 2018 ident: C8SC02446D-(cit34)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11114 – volume: 138 start-page: 5222 year: 2016 ident: C8SC02446D-(cit9)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01784 – volume: 41 start-page: 59 year: 2011 ident: C8SC02446D-(cit12)/*[position()=1] publication-title: J. Pharm. Invest. doi: 10.4333/KPS.2011.41.2.059 – volume: 26 start-page: 62 year: 1968 ident: C8SC02446D-(cit38)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(68)90272-5 – volume: 9 start-page: 3563 year: 2018 ident: C8SC02446D-(cit11)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC00098K – volume: 9 start-page: 17318 year: 2017 ident: C8SC02446D-(cit20)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR06479A – volume: 27 start-page: 903 year: 2015 ident: C8SC02446D-(cit46)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201404308 – volume: 76 start-page: 11 year: 2016 ident: C8SC02446D-(cit29)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.10.048 – volume: 4 start-page: 891 year: 2004 ident: C8SC02446D-(cit1)/*[position()=1] publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1478 – volume: 50 start-page: 891 year: 2011 ident: C8SC02446D-(cit28)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201002820 – volume: 4 start-page: 2887 year: 2016 ident: C8SC02446D-(cit44)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C6TB00438E – volume: 85 start-page: 6930 year: 2013 ident: C8SC02446D-(cit18)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac401405n – volume: 27 start-page: 6382 year: 2015 ident: C8SC02446D-(cit10)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201503381 – volume: 9 start-page: 41648 year: 2017 ident: C8SC02446D-(cit21)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b10608 – volume: 8 start-page: 902 year: 2017 ident: C8SC02446D-(cit25)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-017-01050-0 – volume: 20 start-page: 16488 year: 2014 ident: C8SC02446D-(cit22)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201404625 – volume: 8 start-page: 4896 year: 2017 ident: C8SC02446D-(cit26)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C7SC00700K – reference: 25352246 - Chemistry. 2014 Dec 8;20(50):16488-91 – reference: 12060624 - Clin Cancer Res. 2002 Jun;8(6):1831-7 – reference: 22926560 - Cancer Res. 2012 Nov 1;72(21):5600-12 – reference: 18654426 - Nat Nanotechnol. 2007 Dec;2(12):751-60 – reference: 26895111 - Adv Healthc Mater. 2016 Mar;5(6):721-9 – reference: 29026068 - Nat Commun. 2017 Oct 12;8(1):902 – reference: 26517561 - Biomaterials. 2016 Jan;76:11-24 – reference: 25264685 - Anal Chem. 2014 Oct 21;86(20):10239-45 – reference: 29780488 - Chem Sci. 2018 Mar 5;9(14):3563-3569 – reference: 15516961 - Nat Rev Cancer. 2004 Nov;4(11):891-9 – reference: 29268612 - J Am Chem Soc. 2018 Jan 10;140(1):106-109 – reference: 22107163 - J Am Chem Soc. 2011 Dec 21;133(50):20168-71 – reference: 25885638 - Adv Mater. 2015 Jun 3;27(21):3285-91 – reference: 28139118 - Nano Lett. 2017 Feb 8;17(2):928-937 – reference: 25914945 - Chem Rev. 2015 May 13;115(9):3388-432 – reference: 23495667 - J Am Chem Soc. 2013 Mar 27;135(12):4799-804 – reference: 28959413 - Chem Sci. 2017 Jul 1;8(7):4896-4903 – reference: 15386533 - Cell Biochem Funct. 2004 Nov-Dec;22(6):343-52 – reference: 29091095 - Nanoscale. 2017 Nov 16;9(44):17318-17324 – reference: 23772649 - Anal Chem. 2013 Jul 16;85(14):6930-5 – reference: 29467299 - Sci Transl Med. 2018 Feb 21;10(429):null – reference: 15193886 - Biomaterials. 2005 Jan;26(1):109-15 – reference: 29588255 - Acta Biomater. 2018 May;72:256-265 – reference: 27075956 - J Am Chem Soc. 2016 Apr 27;138(16):5222-5 – reference: 21866903 - Bioconjug Chem. 2011 Oct 19;22(10):1939-45 – reference: 19454272 - Exp Mol Pathol. 2009 Jun;86(3):151-64 – reference: 29116748 - ACS Appl Mater Interfaces. 2017 Dec 6;9(48):41648-41658 – reference: 18259193 - Cell Death Differ. 2008 Apr;15(4):678-85 – reference: 26776487 - Chem Soc Rev. 2016 Mar 7;45(5):1457-501 – reference: 21295087 - J Control Release. 2011 May 30;152(1):2-12 – reference: 19337908 - Int J Hyperthermia. 2009 Mar;25(2):91-5 – reference: 25504416 - Adv Mater. 2015 Feb 4;27(5):903-10 – reference: 28029783 - ACS Nano. 2017 Jan 24;11(1):579-586 – reference: 26331476 - Adv Mater. 2015 Oct 28;27(40):6110-7 – reference: 20345270 - Int J Hyperthermia. 2010;26(3):211-23 – reference: 26393889 - Adv Mater. 2015 Nov 4;27(41):6382-9 – reference: 28004570 - ACS Appl Mater Interfaces. 2017 Jan 25;9(3):2123-2129 – reference: 17805961 - Breast Cancer Res Treat. 2008 Aug;110(3):465-75 – reference: 21246685 - Angew Chem Int Ed Engl. 2011 Jan 24;50(4):891-5 |
SSID | ssj0000331527 |
Score | 2.4793894 |
Snippet | Development of tumor microenvironment responsive and modulating theranostic nano-systems is of great importance for specific and efficient cancer therapy.... We construct a tumor redox microenvironment responsive core–shell therapeutic nanoagent for multi-mode imaging guided synergistic therapy in vitro and in vivo... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 6749 |
SubjectTerms | Anticancer properties Blood flow Cancer Cancer therapies Chemistry Chemotherapy Drug delivery systems Fluorescence Glutathione Gold Hypoxia Infrared radiation Light irradiation Magnetic resonance imaging Manganese dioxide Manganese ions Medical imaging NMR Nuclear magnetic resonance Tumors |
Title | A redox-activated theranostic nanoagent: toward multi-mode imaging guided chemo-photothermal therapy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30310607 https://www.proquest.com/docview/2091330228 https://www.proquest.com/docview/2119920022 https://pubmed.ncbi.nlm.nih.gov/PMC6114999 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gEuiPcWlpURXFBliOPED25VeVRIcIAWuqcqTuLdSjRZQYIQv4CfzThO3LTdw8IlimwnaTNf7JnxzDcIPUs0k1wZTuI4BQNFJpJok3ISmUzFhlIjlU1w_vCRT-fR-0W8GAz-9KKW6kq_SH9fmlfyP1KFNpCrzZL9B8n6m0IDnIN84QgShuOVZDweWbrPX8QmJ_xMrO7YpFMVpSVfHhVwkpy1zr-qCY918YPElr8ZrdauQNFZvcrgShDeuiQX52XV5GStbRB6j3GgIzPo-AW6dCC7CdylffW8Ct4PPYNHkFm3PkLPom58syU0T-tVb3zjs_2a-6Z3zcDTuu-XoE0QhStg66avMIgo4XHodl3yfpujL-rmX9WDGWO9yZQLx2baLsxg2ohLJ_2AWc7Uifw8AYUj4q83S1u3nb-z4vk4xGYHnqnl5tpr6DAEgwNmzMNPX-aLU--vCxhrKwD7P9ax3TL1cnODbf1mz2jZjb3tKTOzW-hma4XgsYPUbTTIizvo-qQr_ncXZWO8Ay3cgxb20HqFHbDwBli4BRZ2wML7wMItsO6h-ds3s8mUtAU5SAp6X0VoSDMeG1vbKgqYMLEGBT3TSoCOE4YJaOq51FrpMM5pzlWgdJLSyAgmWc6DzLD76KAoi_wIYSVyaoSRkkciSqWRYMgLFUuVhKnQSTJEz7vXuExbtnpbNOXbcl9mQ_TUj71wHC2XjjrupLFsv-Efy9DS4jLLATVET3w3vGu7bZYUeVnDGGpDtK2yO0QPnPD8Y5hl1uWBGCKxJVY_wLK3b_cUq_OGxZ1Tar0ND6_04x-hG5tv7BgdVN_r_DFow5U-abxIJy1c_wI4H7cU |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+redox-activated+theranostic+nanoagent%3A+toward+multi-mode+imaging+guided+chemo-photothermal+therapy&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Zhang%2C+Ting-Ting&rft.au=Xu%2C+Cong-Hui&rft.au=Zhao%2C+Wei&rft.au=Gu%2C+Yu&rft.date=2018-09-07&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=9&rft.issue=33&rft.spage=6749&rft.epage=6757&rft_id=info:doi/10.1039%2FC8SC02446D&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8SC02446D |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |