A redox-activated theranostic nanoagent: toward multi-mode imaging guided chemo-photothermal therapy

Development of tumor microenvironment responsive and modulating theranostic nano-systems is of great importance for specific and efficient cancer therapy. Herein, we report a redox-sensitive nanoagent combining manganese dioxide (MnO 2 ) and gold nanoshell coated silicon nanoparticles for synergisti...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 9; no. 33; pp. 6749 - 6757
Main Authors Zhang, Ting-Ting, Xu, Cong-Hui, Zhao, Wei, Gu, Yu, Li, Xiang-Ling, Xu, Jing-Juan, Chen, Hong-Yuan
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 07.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Development of tumor microenvironment responsive and modulating theranostic nano-systems is of great importance for specific and efficient cancer therapy. Herein, we report a redox-sensitive nanoagent combining manganese dioxide (MnO 2 ) and gold nanoshell coated silicon nanoparticles for synergistic chemo-photothermal therapy of hypoxia solid tumors. In highly reducing tumor tissues, the outer MnO 2 nanosheet with the loaded drug would be dissociated by intracellular glutathione (GSH), resulting in on-demand drug release, as well as generating Mn 2+ ions which provided high contrast magnetic resonance imaging (MRI), and fluorescence imaging (FI) in vitro and in vivo . While upon near-infrared (NIR) light irradiation, the gold nanoshell modulated the hypoxic tumor microenvironment via increasing blood flow, achieving enhanced photothermal therapy (PTT) and chemotherapy. After tail vein injection into tumor-bearing mice and monitoring in real time, the intelligent redox-activated nanoagent exhibited high tumor accumulation and powerful synergistic chemo-photothermal therapy efficiency. The proposed work developed a noninvasive strategy to modulate the tumor microenvironment and enhance the anticancer therapeutic effect. We believe that this single nano-platform exhibits promising potential as a comprehensive theranostic agent to enhance the efficacies of synergistic cancer therapy.
AbstractList Development of tumor microenvironment responsive and modulating theranostic nano-systems is of great importance for specific and efficient cancer therapy. Herein, we report a redox-sensitive nanoagent combining manganese dioxide (MnO ) and gold nanoshell coated silicon nanoparticles for synergistic chemo-photothermal therapy of hypoxia solid tumors. In highly reducing tumor tissues, the outer MnO nanosheet with the loaded drug would be dissociated by intracellular glutathione (GSH), resulting in on-demand drug release, as well as generating Mn ions which provided high contrast magnetic resonance imaging (MRI), and fluorescence imaging (FI) and . While upon near-infrared (NIR) light irradiation, the gold nanoshell modulated the hypoxic tumor microenvironment increasing blood flow, achieving enhanced photothermal therapy (PTT) and chemotherapy. After tail vein injection into tumor-bearing mice and monitoring in real time, the intelligent redox-activated nanoagent exhibited high tumor accumulation and powerful synergistic chemo-photothermal therapy efficiency. The proposed work developed a noninvasive strategy to modulate the tumor microenvironment and enhance the anticancer therapeutic effect. We believe that this single nano-platform exhibits promising potential as a comprehensive theranostic agent to enhance the efficacies of synergistic cancer therapy.
We construct a tumor redox microenvironment responsive core–shell therapeutic nanoagent for multi-mode imaging guided synergistic therapy in vitro and in vivo . Development of tumor microenvironment responsive and modulating theranostic nano-systems is of great importance for specific and efficient cancer therapy. Herein, we report a redox-sensitive nanoagent combining manganese dioxide (MnO 2 ) and gold nanoshell coated silicon nanoparticles for synergistic chemo-photothermal therapy of hypoxia solid tumors. In highly reducing tumor tissues, the outer MnO 2 nanosheet with the loaded drug would be dissociated by intracellular glutathione (GSH), resulting in on-demand drug release, as well as generating Mn 2+ ions which provided high contrast magnetic resonance imaging (MRI), and fluorescence imaging (FI) in vitro and in vivo . While upon near-infrared (NIR) light irradiation, the gold nanoshell modulated the hypoxic tumor microenvironment via increasing blood flow, achieving enhanced photothermal therapy (PTT) and chemotherapy. After tail vein injection into tumor-bearing mice and monitoring in real time, the intelligent redox-activated nanoagent exhibited high tumor accumulation and powerful synergistic chemo-photothermal therapy efficiency. The proposed work developed a noninvasive strategy to modulate the tumor microenvironment and enhance the anticancer therapeutic effect. We believe that this single nano-platform exhibits promising potential as a comprehensive theranostic agent to enhance the efficacies of synergistic cancer therapy.
Development of tumor microenvironment responsive and modulating theranostic nano-systems is of great importance for specific and efficient cancer therapy. Herein, we report a redox-sensitive nanoagent combining manganese dioxide (MnO2) and gold nanoshell coated silicon nanoparticles for synergistic chemo-photothermal therapy of hypoxia solid tumors. In highly reducing tumor tissues, the outer MnO2 nanosheet with the loaded drug would be dissociated by intracellular glutathione (GSH), resulting in on-demand drug release, as well as generating Mn2+ ions which provided high contrast magnetic resonance imaging (MRI), and fluorescence imaging (FI) in vitro and in vivo. While upon near-infrared (NIR) light irradiation, the gold nanoshell modulated the hypoxic tumor microenvironment via increasing blood flow, achieving enhanced photothermal therapy (PTT) and chemotherapy. After tail vein injection into tumor-bearing mice and monitoring in real time, the intelligent redox-activated nanoagent exhibited high tumor accumulation and powerful synergistic chemo-photothermal therapy efficiency. The proposed work developed a noninvasive strategy to modulate the tumor microenvironment and enhance the anticancer therapeutic effect. We believe that this single nano-platform exhibits promising potential as a comprehensive theranostic agent to enhance the efficacies of synergistic cancer therapy.
Development of tumor microenvironment responsive and modulating theranostic nano-systems is of great importance for specific and efficient cancer therapy. Herein, we report a redox-sensitive nanoagent combining manganese dioxide (MnO2) and gold nanoshell coated silicon nanoparticles for synergistic chemo-photothermal therapy of hypoxia solid tumors. In highly reducing tumor tissues, the outer MnO2 nanosheet with the loaded drug would be dissociated by intracellular glutathione (GSH), resulting in on-demand drug release, as well as generating Mn2+ ions which provided high contrast magnetic resonance imaging (MRI), and fluorescence imaging (FI) in vitro and in vivo. While upon near-infrared (NIR) light irradiation, the gold nanoshell modulated the hypoxic tumor microenvironment via increasing blood flow, achieving enhanced photothermal therapy (PTT) and chemotherapy. After tail vein injection into tumor-bearing mice and monitoring in real time, the intelligent redox-activated nanoagent exhibited high tumor accumulation and powerful synergistic chemo-photothermal therapy efficiency. The proposed work developed a noninvasive strategy to modulate the tumor microenvironment and enhance the anticancer therapeutic effect. We believe that this single nano-platform exhibits promising potential as a comprehensive theranostic agent to enhance the efficacies of synergistic cancer therapy.Development of tumor microenvironment responsive and modulating theranostic nano-systems is of great importance for specific and efficient cancer therapy. Herein, we report a redox-sensitive nanoagent combining manganese dioxide (MnO2) and gold nanoshell coated silicon nanoparticles for synergistic chemo-photothermal therapy of hypoxia solid tumors. In highly reducing tumor tissues, the outer MnO2 nanosheet with the loaded drug would be dissociated by intracellular glutathione (GSH), resulting in on-demand drug release, as well as generating Mn2+ ions which provided high contrast magnetic resonance imaging (MRI), and fluorescence imaging (FI) in vitro and in vivo. While upon near-infrared (NIR) light irradiation, the gold nanoshell modulated the hypoxic tumor microenvironment via increasing blood flow, achieving enhanced photothermal therapy (PTT) and chemotherapy. After tail vein injection into tumor-bearing mice and monitoring in real time, the intelligent redox-activated nanoagent exhibited high tumor accumulation and powerful synergistic chemo-photothermal therapy efficiency. The proposed work developed a noninvasive strategy to modulate the tumor microenvironment and enhance the anticancer therapeutic effect. We believe that this single nano-platform exhibits promising potential as a comprehensive theranostic agent to enhance the efficacies of synergistic cancer therapy.
Development of tumor microenvironment responsive and modulating theranostic nano-systems is of great importance for specific and efficient cancer therapy. Herein, we report a redox-sensitive nanoagent combining manganese dioxide (MnO 2 ) and gold nanoshell coated silicon nanoparticles for synergistic chemo-photothermal therapy of hypoxia solid tumors. In highly reducing tumor tissues, the outer MnO 2 nanosheet with the loaded drug would be dissociated by intracellular glutathione (GSH), resulting in on-demand drug release, as well as generating Mn 2+ ions which provided high contrast magnetic resonance imaging (MRI), and fluorescence imaging (FI) in vitro and in vivo . While upon near-infrared (NIR) light irradiation, the gold nanoshell modulated the hypoxic tumor microenvironment via increasing blood flow, achieving enhanced photothermal therapy (PTT) and chemotherapy. After tail vein injection into tumor-bearing mice and monitoring in real time, the intelligent redox-activated nanoagent exhibited high tumor accumulation and powerful synergistic chemo-photothermal therapy efficiency. The proposed work developed a noninvasive strategy to modulate the tumor microenvironment and enhance the anticancer therapeutic effect. We believe that this single nano-platform exhibits promising potential as a comprehensive theranostic agent to enhance the efficacies of synergistic cancer therapy.
Author Zhao, Wei
Gu, Yu
Chen, Hong-Yuan
Xu, Jing-Juan
Zhang, Ting-Ting
Xu, Cong-Hui
Li, Xiang-Ling
AuthorAffiliation a State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China . Email: xlli@nju.edu.cn ; Email: xujj@nju.edu.cn
AuthorAffiliation_xml – name: a State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China . Email: xlli@nju.edu.cn ; Email: xujj@nju.edu.cn
Author_xml – sequence: 1
  givenname: Ting-Ting
  surname: Zhang
  fullname: Zhang, Ting-Ting
  organization: State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023
– sequence: 2
  givenname: Cong-Hui
  surname: Xu
  fullname: Xu, Cong-Hui
  organization: State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023
– sequence: 3
  givenname: Wei
  surname: Zhao
  fullname: Zhao, Wei
  organization: State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023
– sequence: 4
  givenname: Yu
  surname: Gu
  fullname: Gu, Yu
  organization: State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023
– sequence: 5
  givenname: Xiang-Ling
  surname: Li
  fullname: Li, Xiang-Ling
  organization: State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023
– sequence: 6
  givenname: Jing-Juan
  orcidid: 0000-0001-9579-9318
  surname: Xu
  fullname: Xu, Jing-Juan
  organization: State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023
– sequence: 7
  givenname: Hong-Yuan
  surname: Chen
  fullname: Chen, Hong-Yuan
  organization: State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30310607$$D View this record in MEDLINE/PubMed
BookMark eNptkU1rFTEUhoNUbK3d-ANkwI0Ioycf8xEXQrl-QsGFug6Z5MzclJnkmmSq_ffmctuqxWxyIM95eMP7mBz54JGQpxReUeDy9ab_ugEmRPvuATlhIGjdNlwe3c0MjslZSpdQDue0Yd0jcsyBU2ihOyH2vIpow69am-yudEZb5S1G7UPKzlS-DHpCn99UOfzU0VbLOmdXL8Fi5RY9OT9V0-ps2TNbXEK924Yc9opFzwfV7voJeTjqOeHZzX1Kvn94_23zqb748vHz5vyiNgLaXFNGbduMnFEhgHdjM4Bs7CA71gvGNDQS-2GQA2uQYitBDtpQMXa859iCHfkpeXvw7tZhQWtK7qhntYslabxWQTv174t3WzWFK9VSKqSURfDiRhDDjxVTVotLBudZewxrUoxSKRkAYwV9fg-9DGv05XuKgaScF6gv1LO_E91FuS2gAHAATAwpRRyVcVlnF_YB3awoqH3N6k_NZeXlvZVb63_g31jJp48
CitedBy_id crossref_primary_10_1016_j_ccr_2023_215027
crossref_primary_10_1039_D2SC06143K
crossref_primary_10_1021_acsabm_9b00329
crossref_primary_10_1039_D0CC02782K
crossref_primary_10_1002_adhm_202101049
crossref_primary_10_1021_acs_analchem_2c03714
crossref_primary_10_3390_ph14010069
crossref_primary_10_1002_smll_202206592
crossref_primary_10_1016_j_cej_2019_123893
crossref_primary_10_1039_D0CS00607F
crossref_primary_10_1016_j_actbio_2018_11_009
crossref_primary_10_1016_j_biomaterials_2019_119465
crossref_primary_10_1021_acs_analchem_1c01858
crossref_primary_10_1039_D2TB00600F
crossref_primary_10_1021_acs_analchem_9b05820
crossref_primary_10_1080_21691401_2019_1687501
crossref_primary_10_1002_viw2_6
crossref_primary_10_1016_j_nantod_2022_101616
crossref_primary_10_1039_D0NR07121H
crossref_primary_10_1016_j_apmt_2021_101027
crossref_primary_10_1039_C8CC08943D
crossref_primary_10_1002_adfm_202110192
crossref_primary_10_1016_j_dyepig_2022_110095
crossref_primary_10_1021_acsabm_9b00475
crossref_primary_10_1039_C9NR04768A
crossref_primary_10_1016_j_cej_2023_142970
crossref_primary_10_1039_D0RA01638A
crossref_primary_10_1016_j_jconrel_2020_11_046
crossref_primary_10_1039_C9QI00894B
crossref_primary_10_1002_VIW_20200141
crossref_primary_10_1016_j_nano_2021_102440
crossref_primary_10_1186_s12951_022_01295_y
crossref_primary_10_1016_j_ijbiomac_2019_11_118
crossref_primary_10_1039_C9SC00985J
crossref_primary_10_1016_j_chphma_2025_01_002
crossref_primary_10_1039_D0TB01021A
crossref_primary_10_1039_D3BM01116J
crossref_primary_10_1186_s12951_020_00761_9
crossref_primary_10_1007_s42114_022_00433_2
crossref_primary_10_1016_j_msec_2021_112504
crossref_primary_10_1016_j_ccr_2022_214540
crossref_primary_10_1016_j_dyepig_2019_03_009
crossref_primary_10_1021_acs_analchem_9b04996
crossref_primary_10_1016_j_ccr_2022_214821
crossref_primary_10_1016_j_biopha_2023_114833
crossref_primary_10_1016_j_eurpolymj_2022_111647
crossref_primary_10_1186_s12951_023_01769_7
crossref_primary_10_1039_C9NR07947E
crossref_primary_10_1039_D2TC03749A
crossref_primary_10_1039_C8NR08269C
crossref_primary_10_1016_j_bioactmat_2020_08_023
crossref_primary_10_1002_chem_201904704
crossref_primary_10_1039_D0BM01855D
crossref_primary_10_1039_D0RA10491D
crossref_primary_10_1186_s12951_022_01579_3
crossref_primary_10_1016_j_pdpdt_2024_104063
crossref_primary_10_1039_D0NR04067C
crossref_primary_10_1016_j_jconrel_2019_12_041
crossref_primary_10_1016_j_colsurfb_2019_110625
Cites_doi 10.1126/scitranslmed.aan3682
10.1021/acsami.6b13876
10.1002/adma.201503006
10.1007/s10549-007-9742-1
10.1080/02656730902744171
10.1039/C6TB03066A
10.1021/cr5004634
10.1002/adhm.201500908
10.1021/ja312221g
10.1021/ac502553u
10.1016/j.yexmp.2009.01.004
10.1021/acsnano.6b06651
10.1038/nnano.2007.387
10.3109/02656731003596259
10.1016/j.actbio.2018.03.035
10.1038/cdd.2008.21
10.1002/adma.201405634
10.1002/adbi.201700084
10.1016/j.biomaterials.2004.02.013
10.1016/j.jconrel.2011.01.030
10.1002/adfm.201604258
10.1021/acs.jpcc.5b10454
10.1039/C5CS00798D
10.1158/0008-5472.CAN-11-3666
10.1021/bc200139n
10.1002/cbf.1149
10.1021/acs.nanolett.6b04269
10.1021/ja2100774
10.1021/jacs.7b11114
10.1021/jacs.6b01784
10.4333/KPS.2011.41.2.059
10.1016/0021-9797(68)90272-5
10.1039/C8SC00098K
10.1039/C7NR06479A
10.1002/adma.201404308
10.1016/j.biomaterials.2015.10.048
10.1038/nrc1478
10.1002/anie.201002820
10.1039/C6TB00438E
10.1021/ac401405n
10.1002/adma.201503381
10.1021/acsami.7b10608
10.1038/s41467-017-01050-0
10.1002/chem.201404625
10.1039/C7SC00700K
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
This journal is © The Royal Society of Chemistry 2018 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
– notice: This journal is © The Royal Society of Chemistry 2018 2018
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/C8SC02446D
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

Materials Research Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 6757
ExternalDocumentID PMC6114999
30310607
10_1039_C8SC02446D
Genre Journal Article
GroupedDBID 0-7
0R~
53G
705
7~J
AAEMU
AAFWJ
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABIQK
ABPDG
ABXOH
ACGFS
ACIWK
ACRPL
ADBBV
ADMRA
ADNMO
AEFDR
AENEX
AESAV
AETIL
AFLYV
AFPKN
AFRZK
AFVBQ
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ANBJS
ANLMG
ANUXI
AOIJS
APEMP
ASPBG
AUDPV
AVWKF
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CAG
CITATION
COF
D0L
ECGLT
EE0
EF-
F5P
FEDTE
GROUPED_DOAJ
H13
HVGLF
HYE
HZ~
H~N
J3G
J3H
J3I
L-8
O-G
O9-
OK1
PGMZT
R7C
R7D
RAOCF
RCNCU
RNS
ROL
RPM
RPMJG
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
-JG
AGSTE
NPM
SMJ
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c406t-121d65f32144037f5b095db9728422a059e8bb9b25e1e6909bac14f7383e60df3
ISSN 2041-6520
IngestDate Thu Aug 21 14:01:31 EDT 2025
Fri Jul 11 12:04:15 EDT 2025
Fri Jul 25 03:30:36 EDT 2025
Wed Feb 19 02:43:44 EST 2025
Thu Apr 24 23:04:06 EDT 2025
Tue Jul 01 03:46:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
License This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c406t-121d65f32144037f5b095db9728422a059e8bb9b25e1e6909bac14f7383e60df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to the work.
ORCID 0000-0001-9579-9318
OpenAccessLink http://dx.doi.org/10.1039/c8sc02446d
PMID 30310607
PQID 2091330228
PQPubID 2047492
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6114999
proquest_miscellaneous_2119920022
proquest_journals_2091330228
pubmed_primary_30310607
crossref_citationtrail_10_1039_C8SC02446D
crossref_primary_10_1039_C8SC02446D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-07
PublicationDateYYYYMMDD 2018-09-07
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-07
  day: 07
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Wang (C8SC02446D-(cit15)/*[position()=1]) 2017; 1
Peer (C8SC02446D-(cit16)/*[position()=1]) 2007; 2
Zhu (C8SC02446D-(cit13)/*[position()=1]) 2017; 5
Zhou (C8SC02446D-(cit44)/*[position()=1]) 2016; 4
Balendiran (C8SC02446D-(cit4)/*[position()=1]) 2004; 22
Bao (C8SC02446D-(cit29)/*[position()=1]) 2016; 76
Shi (C8SC02446D-(cit37)/*[position()=1]) 2018; 72
Wang (C8SC02446D-(cit27)/*[position()=1]) 2013; 135
Yang (C8SC02446D-(cit25)/*[position()=1]) 2017; 8
Rankin (C8SC02446D-(cit7)/*[position()=1]) 2008; 15
Wong (C8SC02446D-(cit17)/*[position()=1]) 2015; 115
Song (C8SC02446D-(cit35)/*[position()=1]) 2015; 27
Li (C8SC02446D-(cit20)/*[position()=1]) 2017; 9
Aioub (C8SC02446D-(cit30)/*[position()=1]) 2017; 11
Cheng (C8SC02446D-(cit41)/*[position()=1]) 2011; 152
Deng (C8SC02446D-(cit23)/*[position()=1]) 2011; 133
Choi (C8SC02446D-(cit12)/*[position()=1]) 2011; 41
Wang (C8SC02446D-(cit39)/*[position()=1]) 2016; 120
Wang (C8SC02446D-(cit42)/*[position()=1]) 2011; 22
Yu (C8SC02446D-(cit11)/*[position()=1]) 2018; 9
Bates (C8SC02446D-(cit45)/*[position()=1]) 2009; 86
Li (C8SC02446D-(cit22)/*[position()=1]) 2014; 20
Stöber (C8SC02446D-(cit38)/*[position()=1]) 1968; 26
Jin (C8SC02446D-(cit21)/*[position()=1]) 2017; 9
Liu (C8SC02446D-(cit28)/*[position()=1]) 2011; 50
Chen (C8SC02446D-(cit46)/*[position()=1]) 2015; 27
Huang (C8SC02446D-(cit9)/*[position()=1]) 2016; 138
Liu (C8SC02446D-(cit40)/*[position()=1]) 2005; 26
Vaupel (C8SC02446D-(cit32)/*[position()=1]) 2010; 26
Yamamoto (C8SC02446D-(cit6)/*[position()=1]) 2008; 110
Song (C8SC02446D-(cit31)/*[position()=1]) 2009; 25
Bai (C8SC02446D-(cit34)/*[position()=1]) 2018; 140
Wang (C8SC02446D-(cit14)/*[position()=1]) 2018; 10
Song (C8SC02446D-(cit33)/*[position()=1]) 2015; 27
Li (C8SC02446D-(cit36)/*[position()=1]) 2014; 86
Ma (C8SC02446D-(cit24)/*[position()=1]) 2017; 27
Yu (C8SC02446D-(cit26)/*[position()=1]) 2017; 8
Ma (C8SC02446D-(cit2)/*[position()=1]) 2017; 17
Cai (C8SC02446D-(cit10)/*[position()=1]) 2015; 27
Hsu (C8SC02446D-(cit43)/*[position()=1]) 2016; 5
Thomas (C8SC02446D-(cit5)/*[position()=1]) 2012; 72
Karimi (C8SC02446D-(cit3)/*[position()=1]) 2016; 45
Gatenby (C8SC02446D-(cit1)/*[position()=1]) 2004; 4
Li (C8SC02446D-(cit19)/*[position()=1]) 2017; 9
Pan (C8SC02446D-(cit18)/*[position()=1]) 2013; 85
Schindl (C8SC02446D-(cit8)/*[position()=1]) 2002; 8
18259193 - Cell Death Differ. 2008 Apr;15(4):678-85
29091095 - Nanoscale. 2017 Nov 16;9(44):17318-17324
19454272 - Exp Mol Pathol. 2009 Jun;86(3):151-64
25885638 - Adv Mater. 2015 Jun 3;27(21):3285-91
26331476 - Adv Mater. 2015 Oct 28;27(40):6110-7
26393889 - Adv Mater. 2015 Nov 4;27(41):6382-9
29026068 - Nat Commun. 2017 Oct 12;8(1):902
25504416 - Adv Mater. 2015 Feb 4;27(5):903-10
26517561 - Biomaterials. 2016 Jan;76:11-24
25352246 - Chemistry. 2014 Dec 8;20(50):16488-91
21295087 - J Control Release. 2011 May 30;152(1):2-12
28004570 - ACS Appl Mater Interfaces. 2017 Jan 25;9(3):2123-2129
15516961 - Nat Rev Cancer. 2004 Nov;4(11):891-9
17805961 - Breast Cancer Res Treat. 2008 Aug;110(3):465-75
15193886 - Biomaterials. 2005 Jan;26(1):109-15
19337908 - Int J Hyperthermia. 2009 Mar;25(2):91-5
29467299 - Sci Transl Med. 2018 Feb 21;10(429):null
22107163 - J Am Chem Soc. 2011 Dec 21;133(50):20168-71
21866903 - Bioconjug Chem. 2011 Oct 19;22(10):1939-45
28959413 - Chem Sci. 2017 Jul 1;8(7):4896-4903
29780488 - Chem Sci. 2018 Mar 5;9(14):3563-3569
25264685 - Anal Chem. 2014 Oct 21;86(20):10239-45
27075956 - J Am Chem Soc. 2016 Apr 27;138(16):5222-5
28029783 - ACS Nano. 2017 Jan 24;11(1):579-586
15386533 - Cell Biochem Funct. 2004 Nov-Dec;22(6):343-52
29588255 - Acta Biomater. 2018 May;72:256-265
29268612 - J Am Chem Soc. 2018 Jan 10;140(1):106-109
20345270 - Int J Hyperthermia. 2010;26(3):211-23
23495667 - J Am Chem Soc. 2013 Mar 27;135(12):4799-804
26776487 - Chem Soc Rev. 2016 Mar 7;45(5):1457-501
23772649 - Anal Chem. 2013 Jul 16;85(14):6930-5
18654426 - Nat Nanotechnol. 2007 Dec;2(12):751-60
26895111 - Adv Healthc Mater. 2016 Mar;5(6):721-9
12060624 - Clin Cancer Res. 2002 Jun;8(6):1831-7
22926560 - Cancer Res. 2012 Nov 1;72(21):5600-12
21246685 - Angew Chem Int Ed Engl. 2011 Jan 24;50(4):891-5
29116748 - ACS Appl Mater Interfaces. 2017 Dec 6;9(48):41648-41658
25914945 - Chem Rev. 2015 May 13;115(9):3388-432
28139118 - Nano Lett. 2017 Feb 8;17(2):928-937
References_xml – volume: 10
  start-page: eaan3682
  year: 2018
  ident: C8SC02446D-(cit14)/*[position()=1]
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aan3682
– volume: 9
  start-page: 2123
  year: 2017
  ident: C8SC02446D-(cit19)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13876
– volume: 27
  start-page: 6110
  year: 2015
  ident: C8SC02446D-(cit33)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503006
– volume: 110
  start-page: 465
  year: 2008
  ident: C8SC02446D-(cit6)/*[position()=1]
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/s10549-007-9742-1
– volume: 25
  start-page: 91
  year: 2009
  ident: C8SC02446D-(cit31)/*[position()=1]
  publication-title: Int. J. Hyperthermia
  doi: 10.1080/02656730902744171
– volume: 5
  start-page: 1339
  year: 2017
  ident: C8SC02446D-(cit13)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C6TB03066A
– volume: 115
  start-page: 3388
  year: 2015
  ident: C8SC02446D-(cit17)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr5004634
– volume: 5
  start-page: 721
  year: 2016
  ident: C8SC02446D-(cit43)/*[position()=1]
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201500908
– volume: 135
  start-page: 4799
  year: 2013
  ident: C8SC02446D-(cit27)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312221g
– volume: 86
  start-page: 10239
  year: 2014
  ident: C8SC02446D-(cit36)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac502553u
– volume: 86
  start-page: 151
  year: 2009
  ident: C8SC02446D-(cit45)/*[position()=1]
  publication-title: Exp. Mol. Pathol.
  doi: 10.1016/j.yexmp.2009.01.004
– volume: 11
  start-page: 579
  year: 2017
  ident: C8SC02446D-(cit30)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b06651
– volume: 2
  start-page: 751
  year: 2007
  ident: C8SC02446D-(cit16)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.387
– volume: 26
  start-page: 211
  year: 2010
  ident: C8SC02446D-(cit32)/*[position()=1]
  publication-title: Int. J. Hyperthermia
  doi: 10.3109/02656731003596259
– volume: 72
  start-page: 256
  year: 2018
  ident: C8SC02446D-(cit37)/*[position()=1]
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.03.035
– volume: 15
  start-page: 678
  year: 2008
  ident: C8SC02446D-(cit7)/*[position()=1]
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2008.21
– volume: 27
  start-page: 3285
  year: 2015
  ident: C8SC02446D-(cit35)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405634
– volume: 1
  start-page: 1700084
  year: 2017
  ident: C8SC02446D-(cit15)/*[position()=1]
  publication-title: Adv. Biosyst.
  doi: 10.1002/adbi.201700084
– volume: 26
  start-page: 109
  year: 2005
  ident: C8SC02446D-(cit40)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.02.013
– volume: 152
  start-page: 2
  year: 2011
  ident: C8SC02446D-(cit41)/*[position()=1]
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2011.01.030
– volume: 8
  start-page: 1831
  year: 2002
  ident: C8SC02446D-(cit8)/*[position()=1]
  publication-title: Clin. Cancer Res.
– volume: 27
  start-page: 1604258
  year: 2017
  ident: C8SC02446D-(cit24)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604258
– volume: 120
  start-page: 377
  year: 2016
  ident: C8SC02446D-(cit39)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b10454
– volume: 45
  start-page: 1457
  year: 2016
  ident: C8SC02446D-(cit3)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00798D
– volume: 72
  start-page: 5600
  year: 2012
  ident: C8SC02446D-(cit5)/*[position()=1]
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-3666
– volume: 22
  start-page: 1939
  year: 2011
  ident: C8SC02446D-(cit42)/*[position()=1]
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc200139n
– volume: 22
  start-page: 343
  year: 2004
  ident: C8SC02446D-(cit4)/*[position()=1]
  publication-title: Cell Biochem. Funct.
  doi: 10.1002/cbf.1149
– volume: 17
  start-page: 928
  year: 2017
  ident: C8SC02446D-(cit2)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04269
– volume: 133
  start-page: 20168
  year: 2011
  ident: C8SC02446D-(cit23)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2100774
– volume: 140
  start-page: 106
  year: 2018
  ident: C8SC02446D-(cit34)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11114
– volume: 138
  start-page: 5222
  year: 2016
  ident: C8SC02446D-(cit9)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b01784
– volume: 41
  start-page: 59
  year: 2011
  ident: C8SC02446D-(cit12)/*[position()=1]
  publication-title: J. Pharm. Invest.
  doi: 10.4333/KPS.2011.41.2.059
– volume: 26
  start-page: 62
  year: 1968
  ident: C8SC02446D-(cit38)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(68)90272-5
– volume: 9
  start-page: 3563
  year: 2018
  ident: C8SC02446D-(cit11)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC00098K
– volume: 9
  start-page: 17318
  year: 2017
  ident: C8SC02446D-(cit20)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR06479A
– volume: 27
  start-page: 903
  year: 2015
  ident: C8SC02446D-(cit46)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404308
– volume: 76
  start-page: 11
  year: 2016
  ident: C8SC02446D-(cit29)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.10.048
– volume: 4
  start-page: 891
  year: 2004
  ident: C8SC02446D-(cit1)/*[position()=1]
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1478
– volume: 50
  start-page: 891
  year: 2011
  ident: C8SC02446D-(cit28)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201002820
– volume: 4
  start-page: 2887
  year: 2016
  ident: C8SC02446D-(cit44)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C6TB00438E
– volume: 85
  start-page: 6930
  year: 2013
  ident: C8SC02446D-(cit18)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac401405n
– volume: 27
  start-page: 6382
  year: 2015
  ident: C8SC02446D-(cit10)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503381
– volume: 9
  start-page: 41648
  year: 2017
  ident: C8SC02446D-(cit21)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b10608
– volume: 8
  start-page: 902
  year: 2017
  ident: C8SC02446D-(cit25)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01050-0
– volume: 20
  start-page: 16488
  year: 2014
  ident: C8SC02446D-(cit22)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201404625
– volume: 8
  start-page: 4896
  year: 2017
  ident: C8SC02446D-(cit26)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC00700K
– reference: 25352246 - Chemistry. 2014 Dec 8;20(50):16488-91
– reference: 12060624 - Clin Cancer Res. 2002 Jun;8(6):1831-7
– reference: 22926560 - Cancer Res. 2012 Nov 1;72(21):5600-12
– reference: 18654426 - Nat Nanotechnol. 2007 Dec;2(12):751-60
– reference: 26895111 - Adv Healthc Mater. 2016 Mar;5(6):721-9
– reference: 29026068 - Nat Commun. 2017 Oct 12;8(1):902
– reference: 26517561 - Biomaterials. 2016 Jan;76:11-24
– reference: 25264685 - Anal Chem. 2014 Oct 21;86(20):10239-45
– reference: 29780488 - Chem Sci. 2018 Mar 5;9(14):3563-3569
– reference: 15516961 - Nat Rev Cancer. 2004 Nov;4(11):891-9
– reference: 29268612 - J Am Chem Soc. 2018 Jan 10;140(1):106-109
– reference: 22107163 - J Am Chem Soc. 2011 Dec 21;133(50):20168-71
– reference: 25885638 - Adv Mater. 2015 Jun 3;27(21):3285-91
– reference: 28139118 - Nano Lett. 2017 Feb 8;17(2):928-937
– reference: 25914945 - Chem Rev. 2015 May 13;115(9):3388-432
– reference: 23495667 - J Am Chem Soc. 2013 Mar 27;135(12):4799-804
– reference: 28959413 - Chem Sci. 2017 Jul 1;8(7):4896-4903
– reference: 15386533 - Cell Biochem Funct. 2004 Nov-Dec;22(6):343-52
– reference: 29091095 - Nanoscale. 2017 Nov 16;9(44):17318-17324
– reference: 23772649 - Anal Chem. 2013 Jul 16;85(14):6930-5
– reference: 29467299 - Sci Transl Med. 2018 Feb 21;10(429):null
– reference: 15193886 - Biomaterials. 2005 Jan;26(1):109-15
– reference: 29588255 - Acta Biomater. 2018 May;72:256-265
– reference: 27075956 - J Am Chem Soc. 2016 Apr 27;138(16):5222-5
– reference: 21866903 - Bioconjug Chem. 2011 Oct 19;22(10):1939-45
– reference: 19454272 - Exp Mol Pathol. 2009 Jun;86(3):151-64
– reference: 29116748 - ACS Appl Mater Interfaces. 2017 Dec 6;9(48):41648-41658
– reference: 18259193 - Cell Death Differ. 2008 Apr;15(4):678-85
– reference: 26776487 - Chem Soc Rev. 2016 Mar 7;45(5):1457-501
– reference: 21295087 - J Control Release. 2011 May 30;152(1):2-12
– reference: 19337908 - Int J Hyperthermia. 2009 Mar;25(2):91-5
– reference: 25504416 - Adv Mater. 2015 Feb 4;27(5):903-10
– reference: 28029783 - ACS Nano. 2017 Jan 24;11(1):579-586
– reference: 26331476 - Adv Mater. 2015 Oct 28;27(40):6110-7
– reference: 20345270 - Int J Hyperthermia. 2010;26(3):211-23
– reference: 26393889 - Adv Mater. 2015 Nov 4;27(41):6382-9
– reference: 28004570 - ACS Appl Mater Interfaces. 2017 Jan 25;9(3):2123-2129
– reference: 17805961 - Breast Cancer Res Treat. 2008 Aug;110(3):465-75
– reference: 21246685 - Angew Chem Int Ed Engl. 2011 Jan 24;50(4):891-5
SSID ssj0000331527
Score 2.4793894
Snippet Development of tumor microenvironment responsive and modulating theranostic nano-systems is of great importance for specific and efficient cancer therapy....
We construct a tumor redox microenvironment responsive core–shell therapeutic nanoagent for multi-mode imaging guided synergistic therapy in vitro and in vivo...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6749
SubjectTerms Anticancer properties
Blood flow
Cancer
Cancer therapies
Chemistry
Chemotherapy
Drug delivery systems
Fluorescence
Glutathione
Gold
Hypoxia
Infrared radiation
Light irradiation
Magnetic resonance imaging
Manganese dioxide
Manganese ions
Medical imaging
NMR
Nuclear magnetic resonance
Tumors
Title A redox-activated theranostic nanoagent: toward multi-mode imaging guided chemo-photothermal therapy
URI https://www.ncbi.nlm.nih.gov/pubmed/30310607
https://www.proquest.com/docview/2091330228
https://www.proquest.com/docview/2119920022
https://pubmed.ncbi.nlm.nih.gov/PMC6114999
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gEuiPcWlpURXFBliOPED25VeVRIcIAWuqcqTuLdSjRZQYIQv4CfzThO3LTdw8IlimwnaTNf7JnxzDcIPUs0k1wZTuI4BQNFJpJok3ISmUzFhlIjlU1w_vCRT-fR-0W8GAz-9KKW6kq_SH9fmlfyP1KFNpCrzZL9B8n6m0IDnIN84QgShuOVZDweWbrPX8QmJ_xMrO7YpFMVpSVfHhVwkpy1zr-qCY918YPElr8ZrdauQNFZvcrgShDeuiQX52XV5GStbRB6j3GgIzPo-AW6dCC7CdylffW8Ct4PPYNHkFm3PkLPom58syU0T-tVb3zjs_2a-6Z3zcDTuu-XoE0QhStg66avMIgo4XHodl3yfpujL-rmX9WDGWO9yZQLx2baLsxg2ohLJ_2AWc7Uifw8AYUj4q83S1u3nb-z4vk4xGYHnqnl5tpr6DAEgwNmzMNPX-aLU--vCxhrKwD7P9ax3TL1cnODbf1mz2jZjb3tKTOzW-hma4XgsYPUbTTIizvo-qQr_ncXZWO8Ay3cgxb20HqFHbDwBli4BRZ2wML7wMItsO6h-ds3s8mUtAU5SAp6X0VoSDMeG1vbKgqYMLEGBT3TSoCOE4YJaOq51FrpMM5pzlWgdJLSyAgmWc6DzLD76KAoi_wIYSVyaoSRkkciSqWRYMgLFUuVhKnQSTJEz7vXuExbtnpbNOXbcl9mQ_TUj71wHC2XjjrupLFsv-Efy9DS4jLLATVET3w3vGu7bZYUeVnDGGpDtK2yO0QPnPD8Y5hl1uWBGCKxJVY_wLK3b_cUq_OGxZ1Tar0ND6_04x-hG5tv7BgdVN_r_DFow5U-abxIJy1c_wI4H7cU
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+redox-activated+theranostic+nanoagent%3A+toward+multi-mode+imaging+guided+chemo-photothermal+therapy&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Zhang%2C+Ting-Ting&rft.au=Xu%2C+Cong-Hui&rft.au=Zhao%2C+Wei&rft.au=Gu%2C+Yu&rft.date=2018-09-07&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=9&rft.issue=33&rft.spage=6749&rft.epage=6757&rft_id=info:doi/10.1039%2FC8SC02446D&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8SC02446D
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon