Silicon Photonic Flex-LIONS for Bandwidth-Reconfigurable Optical Interconnects
This paper reports the first experimental demonstration of silicon photonic (SiPh) Flex-LIONS, a bandwidth-reconfigurable SiPh switching fabric based on wavelength routing in arrayed waveguide grating routers (AWGRs) and space switching. Compared with the state-of-the-art bandwidth-reconfigurable sw...
Saved in:
Published in | IEEE journal of selected topics in quantum electronics Vol. 26; no. 2; pp. 1 - 10 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper reports the first experimental demonstration of silicon photonic (SiPh) Flex-LIONS, a bandwidth-reconfigurable SiPh switching fabric based on wavelength routing in arrayed waveguide grating routers (AWGRs) and space switching. Compared with the state-of-the-art bandwidth-reconfigurable switching fabrics, Flex-LIONS architecture exhibits 21× less number of switching elements and 2.9× lower on-chip loss for 64 ports, which indicates significant improvements in scalability and energy efficiency. System experimental results carried out with an 8-port SiPh Flex-LIONS prototype demonstrate error-free one-to-eight multicast interconnection at 25 Gb/s and bandwidth reconfiguration from 25 Gb/s to 100 Gb/s between selected input and output ports. Besides, benchmarking simulation results show that Flex-LIONS can provide a 1.33× reduction in packet latency and >1.5× improvements in energy efficiency when replacing the core layer switches of Fat-Tree topologies with Flex-LIONS. Finally, we discuss the possibility of scaling Flex-LIONS up to N = 1024 ports (N = M × W) by arranging M 2 W-port Flex-LIONS in a Thin-CLOS architecture using W wavelengths. |
---|---|
ISSN: | 1077-260X 1558-4542 |
DOI: | 10.1109/JSTQE.2019.2950770 |