Hydrogen scrambling in ethane induced by intense laser fields: statistical analysis of coincidence events

Two-body Coulomb explosion processes of ethane (CH(3)CH(3)) and its isotopomers (CD(3)CD(3) and CH(3)CD(3)) induced by an intense laser field (800 nm, 1.0 × 10(14) W/cm(2)) with three different pulse durations (40 fs, 80 fs, and 120 fs) are investigated by a coincidence momentum imaging method. On t...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 136; no. 20; p. 204309
Main Authors Kanya, Reika, Kudou, Tatsuya, Schirmel, Nora, Miura, Shun, Weitzel, Karl-Michael, Hoshina, Kennosuke, Yamanouchi, Kaoru
Format Journal Article
LanguageEnglish
Published United States 28.05.2012
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Two-body Coulomb explosion processes of ethane (CH(3)CH(3)) and its isotopomers (CD(3)CD(3) and CH(3)CD(3)) induced by an intense laser field (800 nm, 1.0 × 10(14) W/cm(2)) with three different pulse durations (40 fs, 80 fs, and 120 fs) are investigated by a coincidence momentum imaging method. On the basis of statistical treatment of the coincidence data, the contributions from false coincidence events are estimated and the relative yields of the decomposition pathways are determined with sufficiently small uncertainties. The branching ratios of the two body decomposition pathways of CH(3)CD(3) from which triatomic hydrogen molecular ions (H(3)(+), H(2)D(+), HD(2)(+), D(3)(+)) are ejected show that protons and deuterons within CH(3)CD(3) are scrambled almost statistically prior to the ejection of a triatomic hydrogen molecular ion. The branching ratios were estimated by statistical Rice-Ramsperger-Kassel-Marcus calculations by assuming a transition state with a hindered-rotation of a diatomic hydrogen moiety. The hydrogen scrambling dynamics followed by the two body decomposition processes are discussed also by using the anisotropies in the ejection directions of the fragment ions and the kinetic energy distribution of the two body decomposition pathways.
ISSN:1089-7690
DOI:10.1063/1.4720503