Revealing the sodium storage behavior of biomass-derived hard carbon by using pure lignin and cellulose as model precursors

Lignin and cellulose are dominant components in biomass and hold the key for preparing hard carbons. Identifying the sodium storage behaviors of sole lignin/cellulose-derived hard carbons is significant for choosing optimal biomass precursors. Herein, milled-wood lignin and microcrystalline cellulos...

Full description

Saved in:
Bibliographic Details
Published inRenewable energy Vol. 189; pp. 630 - 638
Main Authors Wu, Xi-Shuo, Dong, Xiao-Ling, Wang, Bo-Yang, Xia, Ji-Li, Li, Wen-Cui
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Lignin and cellulose are dominant components in biomass and hold the key for preparing hard carbons. Identifying the sodium storage behaviors of sole lignin/cellulose-derived hard carbons is significant for choosing optimal biomass precursors. Herein, milled-wood lignin and microcrystalline cellulose are used as model precursors to prepare hard carbons and the corresponding sodium storage performances are investigated to understand the contribution of each biomass component. Compared with lignin-derived carbon, cellulose-derived carbon enables a larger initial Coulombic efficiency of 87.1%, a higher reversible capacity of 343.3 mA h g−1 at 0.02 A g−1 and a good rate capability of 49.2 mA h g−1 at 1 A g−1 owing to larger La, lower ID/IG values and higher sp2C, CO contents with the benefit of enhancing the conductivity, plateau capacity, and the rapid diffusion of sodium ions. The excellent performance of cellulose-derived carbon provides guidance on the choice of biomass precursors for high-performance sodium-ion batteries. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0960-1481
1879-0682
DOI:10.1016/j.renene.2022.03.023