Optical quantum memory

Quantum memory is important for a range of application including quantum information processing, matching various processes within a quantum devices, as a tool to convert photons to photons-on-demand and for implementation of long-distance quantum communication using quantum repeaters. Here, state-o...

Full description

Saved in:
Bibliographic Details
Published inNature photonics Vol. 3; no. 12; pp. 706 - 714
Main Authors Lvovsky, Alexander I, Sanders, Barry C, Tittel, Wolfgang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.12.2009
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Quantum memory is important for a range of application including quantum information processing, matching various processes within a quantum devices, as a tool to convert photons to photons-on-demand and for implementation of long-distance quantum communication using quantum repeaters. Here, state-of-the-art optical quantum memory is reviewed. Quantum memory is essential for the development of many devices in quantum information processing, including a synchronization tool that matches various processes within a quantum computer, an identity quantum gate that leaves any state unchanged, and a mechanism to convert heralded photons to on-demand photons. In addition to quantum computing, quantum memory will be instrumental for implementing long-distance quantum communication using quantum repeaters. The importance of this basic quantum gate is exemplified by the multitude of optical quantum memory mechanisms being studied, such as optical delay lines, cavities and electromagnetically induced transparency, as well as schemes that rely on photon echoes and the off-resonant Faraday interaction. Here, we report on state-of-the-art developments in the field of optical quantum memory, establish criteria for successful quantum memory and detail current performance levels.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1749-4885
1749-4893
DOI:10.1038/nphoton.2009.231