Radiation survey in the International Space Station

The project ALTEA-shield/survey is part of an European Space Agency (ESA) – ILSRA (International Life Science Research Announcement) program and provides a detailed study of the International Space Station (ISS) (USLab and partly Columbus) radiation environment. The experiment spans over 2 years, fr...

Full description

Saved in:
Bibliographic Details
Published inJournal of space weather and space climate Vol. 5; p. A37
Main Authors Narici, Livio, Casolino, Marco, Di Fino, Luca, Larosa, Marianna, Picozza, Piergiorgio, Zaconte, Veronica
Format Journal Article
LanguageEnglish
Published les Ulis EDP Sciences 2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The project ALTEA-shield/survey is part of an European Space Agency (ESA) – ILSRA (International Life Science Research Announcement) program and provides a detailed study of the International Space Station (ISS) (USLab and partly Columbus) radiation environment. The experiment spans over 2 years, from September 20, 2010 to September 30, 2012, for a total of about 1.5 years of effective measurements. The ALTEA detector system measures all heavy ions above helium and, to a limited extent, hydrogen and helium (respectively, in 25 Mev–45 MeV and 25 MeV/n–250 MeV/n energy windows) while tracking every individual particle. It measures independently the radiation along the three ISS coordinate axes. The data presented consist of flux, dose, and dose equivalent over the time of investigation, at the different surveyed locations. Data are selected from the different geographic regions (low and high latitudes and South Atlantic Anomaly, SAA). Even with a limited acceptance window for the proton contribution, the flux/dose/dose equivalent results as well as the radiation spectra provide information on how the radiation risks change in the different surveyed sites. The large changes in radiation environment found among the measured sites, due to the different shield/mass distribution, require a detailed Computer-Aided Design (CAD) model to be used together with these measurements for the validation of radiation models in space habitats. Altitude also affects measured radiation, especially in the SAA. In the period of measurements, the altitude (averaged over each minute) ranged from 339 km to 447 km. Measurements show the significant shielding effect of the ISS truss, responsible for a consistent amount of reduction in dose equivalent (and so in radiation quality). Measured Galactic Cosmic Ray (GCR) dose rates at high latitude range from 0.354 ± 0.002 nGy/s to 0.770 ± 0.006 nGy/s while dose equivalent from 1.21 ± 0.04 nSv/s to 6.05 ± 0.09 nSv/s. The radiation variation over the SAA is studied. Even with the reduced proton sensitivity, the high day-by-day variability, as well as the strong altitude dependence is clearly observed. The ability of filtering out this contribution from the data is presented as a tool to construct a radiation data set well mimicking deep space radiation, useful for model validations and improvements.
Bibliography:publisher-ID:swsc150037
istex:36383F71AEA4D7F54BE521E8A75216C2078A295A
ark:/67375/80W-ZR81B0NK-M
dkey:10.1051/swsc/2015037
bibcode:2015JSWSC...5A..37N
ISSN:2115-7251
2115-7251
DOI:10.1051/swsc/2015037