Brain Representation of Active and Passive Movements

During active and passive (driven by a torque motor) flexion and extension of the right elbow, regional cerebral blood flow (rCBF) was measured in six healthy, male volunteers using positron emission tomography and the standard H215O injection technique. During active as well as during passive movem...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 4; no. 2; pp. 105 - 110
Main Authors Weiller, C., Jüptner, M., Fellows, S., Rijntjes, M., Leonhardt, G., Kiebel, S., Müller, S., Diener, H.C., Thilmann, A.F.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.1996
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:During active and passive (driven by a torque motor) flexion and extension of the right elbow, regional cerebral blood flow (rCBF) was measured in six healthy, male volunteers using positron emission tomography and the standard H215O injection technique. During active as well as during passive movements of the right elbow there were strong increases in rCBF, identical in location, amount, and extent in the contralateral sensorimotor cortex. There were activations during both conditions in the supplementary motor area (stronger and more inferior in the active condition) and inferior parietal cortex (on the convexity during active movements and in the depth of the central sulcus during passive movements). During active movements only, activations of the basal ganglia and the cingulate gyrus were found. Brain activations during motor tasks are largely related to the processing of afferent information.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1053-8119
1095-9572
DOI:10.1006/nimg.1996.0034