DC-free Method to Evaluate Nanoscale Equivalent Oxide Thickness: Dark-Mode Scanning Capacitance Microscopy

This study developed a DC-free technique that used dark-mode scanning capacitance microscopy (DM-SCM) with a small-area contact electrode to evaluate and image equivalent oxide thicknesses (EOTs). In contrast to the conventional capacitance-voltage (C-V) method, which requires a large-area contact e...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 14; no. 11; p. 934
Main Authors Chang, Mao-Nan, Wu, Yi-Shan, Lin, Chiao-Jung, Hsueh, Yu-Hsun, Su, Chun-Jung, Lee, Yao-Jen
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 26.05.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study developed a DC-free technique that used dark-mode scanning capacitance microscopy (DM-SCM) with a small-area contact electrode to evaluate and image equivalent oxide thicknesses (EOTs). In contrast to the conventional capacitance-voltage (C-V) method, which requires a large-area contact electrode and DC voltage sweeping to provide reliable C-V curves from which the EOT can be determined, the proposed method enabled the evaluation of the EOT to a few nanometers for thermal and high-k oxides. The signal intensity equation defining the voltage modulation efficiency in scanning capacitance microscopy (SCM) indicates that thermal oxide films on silicon can serve as calibration references for the establishment of a linear relationship between the SCM signal ratio and the EOT ratio; the EOT is then determined from this relationship. Experimental results for thermal oxide films demonstrated that the EOT obtained using the DM-SCM approach closely matched the value obtained using the typical C-V method for frequencies ranging from 90 kHz to 1 MHz. The percentage differences in EOT values between the C-V and SCM measurements were smaller than 0.5%. For high-k oxide films, DM-SCM with a DC-free operation may mitigate the effect of DC voltages on evaluations of EOTs. In addition, image operations were performed to obtain EOT images showing the EOT variation induced by DC-stress-induced charge trapping. Compared with the typical C-V method, the proposed DM-SCM approach not only provides a DC-free approach for EOT evaluation, but also offers a valuable opportunity to visualize the EOT distribution before and after the application of DC stress.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2079-4991
2079-4991
DOI:10.3390/nano14110934