An activity-specificity trade-off encoded in human transcription factors
Transcription factors (TFs) control specificity and activity of gene transcription, but whether a relationship between these two features exists is unclear. Here we provide evidence for an evolutionary trade-off between the activity and specificity in human TFs encoded as submaximal dispersion of ar...
Saved in:
Published in | Nature cell biology Vol. 26; no. 8; pp. 1309 - 1321 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.08.2024
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Transcription factors (TFs) control specificity and activity of gene transcription, but whether a relationship between these two features exists is unclear. Here we provide evidence for an evolutionary trade-off between the activity and specificity in human TFs encoded as submaximal dispersion of aromatic residues in their intrinsically disordered protein regions. We identified approximately 500 human TFs that encode short periodic blocks of aromatic residues in their intrinsically disordered regions, resembling imperfect prion-like sequences. Mutation of periodic aromatic residues reduced transcriptional activity, whereas increasing the aromatic dispersion of multiple human TFs enhanced transcriptional activity and reprogramming efficiency, promoted liquid–liquid phase separation in vitro and more promiscuous DNA binding in cells. Together with recent work on enhancer elements, these results suggest an important evolutionary role of suboptimal features in transcriptional control. We propose that rational engineering of amino acid features that alter phase separation may be a strategy to optimize TF-dependent processes, including cellular reprogramming.
Naderi et al. show that increasing the dispersion of aromatic residues in intrinsically disordered regions of human transcription factors enhances their activity but reduces their specificity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1465-7392 1476-4679 1476-4679 |
DOI: | 10.1038/s41556-024-01411-0 |