Radar remote sensing-based inversion model of soil salt content at different depths under vegetation

Excessive soil salt content (SSC) seriously affects the crop growth and economic benefits in the agricultural production area. Prior research mainly focused on estimating the salinity in the top bare soil rather than in deep soil that is vital to crop growth. For this end, an experiment was carried...

Full description

Saved in:
Bibliographic Details
Published inPeerJ (San Francisco, CA) Vol. 10; p. e13306
Main Authors Chen, Yinwen, Du, Yuyan, Yin, Haoyuan, Wang, Huiyun, Chen, Haiying, Li, Xianwen, Zhang, Zhitao, Chen, Junying
Format Journal Article
LanguageEnglish
Published United States PeerJ, Inc 26.04.2022
PeerJ Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Excessive soil salt content (SSC) seriously affects the crop growth and economic benefits in the agricultural production area. Prior research mainly focused on estimating the salinity in the top bare soil rather than in deep soil that is vital to crop growth. For this end, an experiment was carried out in the Hetao Irrigation District, Inner Mongolia, China. In the experiment, the SSC at different depths under vegetation was measured, and the Sentinel-1 radar images were obtained synchronously. The radar backscattering coefficients (VV and VH) were combined to construct multiple indices, whose sensitivity was then analyzed using the best subset selection (BSS). Meanwhile, four most commonly used algorithms, partial least squares regression (PLSR), quantile regression (QR), support vector machine (SVM), and extreme learning machine (ELM), were utilized to construct estimation models of salinity at the depths of 0-10, 10-20, 0-20, 20-40, 0-40, 40-60 and 0-60 cm before and after BSS, respectively. The results showed: (a) radar remote sensing can be used to estimate the salinity in the root zone of vegetation (0-30 cm); (b) after BSS, the correlation coefficients and estimation accuracy of the four monitoring models were all improved significantly; (c) the estimation accuracy of the four regression models was: SVM > QR > ELM > PLSR; and (d) among the seven sampling depths, 10-20 cm was the optimal inversion depth for all the four models, followed by 20-40 and 0-40 cm. Among the four models, SVM was higher in accuracy than the other three at 10-20 cm (R = 0.67, R = 0.12%). These findings can provide valuable guidance for soil salinity monitoring and agricultural production in the arid or semi-arid areas under vegetation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2167-8359
2167-8359
DOI:10.7717/peerj.13306