Stability study of thermal cycling on organic solar cells
We present a side-by-side comparison of the stability of three different types of benchmark solution-processed organic solar cells (OSCs), subject to thermal cycling stress conditions. We study the in situ performance during 5 complete thermal cycles between −100 and 80 °C and find that all the devi...
Saved in:
Published in | Journal of materials research Vol. 33; no. 13; pp. 1902 - 1908 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York, USA
Cambridge University Press
14.07.2018
Springer International Publishing Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We present a side-by-side comparison of the stability of three different types of benchmark solution-processed organic solar cells (OSCs), subject to thermal cycling stress conditions. We study the in situ performance during 5 complete thermal cycles between −100 and 80 °C and find that all the device types investigated exhibit superior stability, albeit with a distinct temperature dependence of device efficiency. After applying a much harsher condition of 50 thermal cycles, we further affirm the robustness of the OSC against thermal cycling stress. Our results suggest that OSCs could be a promising candidate for applications with large variations and rapid change in the operating temperature such as outer space applications. Also, a substantial difference in the efficiency drops from high to low temperature for different systems is observed. It suggests that maintaining optimum performance with minimal variations with operating temperature is a key challenge to be addressed for such photovoltaic applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0884-2914 2044-5326 |
DOI: | 10.1557/jmr.2018.167 |