Mapping the dynamics of a giant Ly α halo at z = 4.1 with MUSE: the energetics of a large-scale AGN-driven outflow around a massive, high-redshift galaxy
We present Multi Unit Spectroscopic Explorer (MUSE) integral field unit spectroscopic observations of the ∼150 kpc Lyα halo around the z = 4.1 radio galaxy TN J1338−1942. This 9-h observation maps the full two-dimensional kinematics of the Lyα emission across the halo, which shows a velocity gradien...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 449; no. 2; pp. 1298 - 1308 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
11.05.2015
Oxford University Press (OUP): Policy P - Oxford Open Option A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We present Multi Unit Spectroscopic Explorer (MUSE) integral field unit spectroscopic observations of the ∼150 kpc Lyα halo around the z = 4.1 radio galaxy TN J1338−1942. This 9-h observation maps the full two-dimensional kinematics of the Lyα emission across the halo, which shows a velocity gradient of Δv ∼ 700 km s−1 across 150 kpc in projection, and also identified two absorption systems associated with the Lyα emission from the radio galaxy. Both absorbers have high covering fractions (∼1) spanning the full ∼150 × 80 kpc2 extent of the halo. The stronger and more blueshifted absorber (Δv ∼ −1200 km s−1 from the systemic) has dynamics that mirror that of the underlying halo emission and we suggest that this high column material (n(H i) ∼ 1019.4 cm−2), which is also seen in C iv absorption, represents an outflowing shell that has been driven by the active galactic nuclei (AGN) or the star formation within the galaxy. The weaker (n(H i) ∼ 1014 cm−2) and less blueshifted (Δv ∼ −500 km s−1) absorber most likely represents material in the cavity between the outflowing shell and the Lyα halo. We estimate that the mass in the shell must be ∼1010 M⊙ – a significant fraction of the interstellar medium from a galaxy at z = 4. The large scales of these coherent structures illustrate the potentially powerful influence of AGN feedback on the distribution and energetics of material in their surroundings. Indeed, the discovery of high-velocity (∼1000 km s−1), group-halo-scale (i.e. >150 kpc) and mass-loaded winds in the vicinity of the central radio source is in agreement with the requirements of models that invoke AGN-driven outflows to regulate star formation and black hole growth in massive galaxies. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stv366 |