Characterization of duplicated heme oxygenase-1 genes and their responses to hypoxic stress in blunt snout bream (Megalobrama amblycephala)

The heme oxygenase (HO)-1 is a cytoprotective enzyme that can be involved in cytoprotection against hypoxia stress. In this study, we cloned duplicated HO-1a and HO-1b cDNAs in hypoxia-sensitive blunt snout bream ( Megalobrama amblycephala ). HO-1a and HO-1b encode peptides with 272 amino acids and...

Full description

Saved in:
Bibliographic Details
Published inFish physiology and biochemistry Vol. 43; no. 2; pp. 641 - 651
Main Authors Guan, Wen-Zhi, Guo, Dan-Dan, Sun, Yi-Wen, Chen, Jie, Jiang, Xia-Yun, Zou, Shu-Ming
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.04.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The heme oxygenase (HO)-1 is a cytoprotective enzyme that can be involved in cytoprotection against hypoxia stress. In this study, we cloned duplicated HO-1a and HO-1b cDNAs in hypoxia-sensitive blunt snout bream ( Megalobrama amblycephala ). HO-1a and HO-1b encode peptides with 272 amino acids and 246 amino acids, respectively, and they share a low sequence identity of 55%. HO-1a and HO-1b mRNAs were maternally deposited in the zygote, and the mRNAs decreased to the lowest levels at 8 hpf. Both mRNAs were significantly ( p  < 0.01) expressed from 12 hpf and fluctuated but maintained a high level after 16 hpf. Using in situ hybridization, HO-1a and HO-1b mRNAs were ubiquitously expressed in embryos at 12 hpf. At 24 and 36 hpf, HO-1b transcripts were detected in the mid- and hindbrain, respectively, whereas HO-1a was mainly transcribed in the eyes and endoderm at 24 hpf and in the brain at 36 hpf. In adult fish, HO-1a was abundantly expressed in the heart, liver, gill, kidney, spleen, and brain, while HO-1b mRNA was detected mainly in the kidney. After exposure to hypoxic stress, both HO-1a and HO-1b mRNAs were upregulated significantly in the gill and liver but downregulated significantly in the brain ( p  < 0.01). These findings suggest that duplicated HO genes have evolved divergently and yet play overlapping biological roles in regulating the response to hypoxia in M. amblycephala .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0920-1742
1573-5168
DOI:10.1007/s10695-016-0318-z