Unified description of size effects of transport properties of liquids flowing in nanochannels

The present work connects transport properties of simple fluids flowing in nanochannels: the diffusion coefficient, the shear viscosity and the thermal conductivity. We used non-equilibrium molecular dynamics (NEMD) simulations of liquid argon flowing in a nanochannel formed by krypton walls, macros...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 55; no. 19-20; pp. 5087 - 5092
Main Authors Giannakopoulos, A.E., Sofos, F., Karakasidis, T.E., Liakopoulos, A.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.09.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The present work connects transport properties of simple fluids flowing in nanochannels: the diffusion coefficient, the shear viscosity and the thermal conductivity. We used non-equilibrium molecular dynamics (NEMD) simulations of liquid argon flowing in a nanochannel formed by krypton walls, macroscopically equivalent to the planar Poiseuille flow, at constant temperature. All properties approach bulk values as the channel width increases. As the channel width decreases, the transport properties change dramatically: the diffusion coefficient decreases with the channel width, the shear viscosity increases with the channel width and the thermal conductivity increases with the channel width. The novel result of this work is that, if the size effect of one of the transport properties (say the diffusion coefficient) is known, then all the others can be estimated from results that apply to classic fluid mechanics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0017-9310
1879-2189
DOI:10.1016/j.ijheatmasstransfer.2012.05.008