Investigation of heat transfer in square porous-annulus

The current study is focused to analyze the heat transfer characteristics in a porous duct. The mathematical model of heat transfer in a porous duct was solved by converting the governing partial differential equations into a set of algebraic equations with the help of finite element method. A simpl...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 55; no. 7-8; pp. 2184 - 2192
Main Authors Badruddin, Irfan Anjum, Al-Rashed, Abdullah A.A.A., Salman Ahmed, N.J., Kamangar, Sarfaraz
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.03.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The current study is focused to analyze the heat transfer characteristics in a porous duct. The mathematical model of heat transfer in a porous duct was solved by converting the governing partial differential equations into a set of algebraic equations with the help of finite element method. A simple three noded triangular element is used to mesh the duct domain. The current problem consists of a square duct with outer walls being exposed to hot temperature Th, and inner walls subjected to cool temperature Tc. Emphasis is given to investigate the effect of width ratio of cavity on heat and fluid flow characteristics inside the porous medium. The results are reported for various duct width ratios, Rayleigh number etc. It is found that the Nusselt number increases with increase in height of cavity along the vertical walls of duct; however the Nusselt number for certain values of duct ratio oscillates along the width of the porous medium at bottom wall of the cavity.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0017-9310
1879-2189
DOI:10.1016/j.ijheatmasstransfer.2011.12.023