Dual steady transports of heat and moisture in a vent enclosure with all round states of ambient air

Combined natural convective heat and moisture transports in a moist-air-filled enclosure with four free vent ports are numerically investigated. Four situations of ambient air states, hot and humid (I), hot and arid (II), cold and arid (III), and cold and humid (IV), are taken into consideration. Co...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 55; no. 23-24; pp. 6979 - 6993
Main Authors Zhao, Fu-Yun, Rank, Ernst, Liu, Di, Wang, Han-Qing, Ding, Yu-Long
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.11.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Combined natural convective heat and moisture transports in a moist-air-filled enclosure with four free vent ports are numerically investigated. Four situations of ambient air states, hot and humid (I), hot and arid (II), cold and arid (III), and cold and humid (IV), are taken into consideration. Convective transports of semi-enclosed air, heat and moisture are respectively analyzed using the contours of streamfunction, heatfunction and massfunction, in addition to the isotherms and iso-concentrations. Overall convective heat transfer rate (Nu) and moisture transfer rate (Sh) of the internal concentrated heat and moisture source have been correlated with the thermal Rayleigh number respectively within the domain of the heat transfer driven flows and that of moisture transfer driven flows. When different initial convective flow conditions were imposed in the cases (I) and (IV), dual steady flow states of semi-enclosed heat and moisture convection are observed, and heat and moisture transport potentials can be enhanced or inhibited depending on the flow solution branches. These results can be adopted to guide the design of natural ventilation in the humid regions.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0017-9310
1879-2189
DOI:10.1016/j.ijheatmasstransfer.2012.07.011