Passive water management at the cathode of a planar air-breathing proton exchange membrane fuel cell

Water management is a significant challenge in portable polymer electrolyte membrane (PEM) fuel cells and particularly in proton exchange membrane (PEM) fuel cells with air-breathing cathodes. Liquid water condensation and accumulation at the cathode surface is unavoidable in a passive design operat...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 195; no. 10; pp. 3201 - 3206
Main Authors Fabian, T., O’Hayre, R., Litster, S., Prinz, F.B., Santiago, J.G.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.05.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Water management is a significant challenge in portable polymer electrolyte membrane (PEM) fuel cells and particularly in proton exchange membrane (PEM) fuel cells with air-breathing cathodes. Liquid water condensation and accumulation at the cathode surface is unavoidable in a passive design operated over a wide range of ambient and load conditions. Excessive flooding or dry out of the open cathode can lead to a dramatic reduction of fuel cell power. We report a water management design based on a hydrophilic and electrically conductive wick. A prototype air-breathing fuel cell with the proposed water management design successfully operated under severe flooding conditions, ambient temperature 10 °C and relative humidity of 80%, for up to 6 h with no observable cathode flooding or loss of performance.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0378-7753
1873-2755
DOI:10.1016/j.jpowsour.2009.12.030